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Abstract
Infinitely many new examples of compact Lorentzian surfaces without conjugate points are
given. Further, we study the existence and the stability of this property among Lorentzian
metrics with a Killing field. We obtain a new obstruction and prove that the Clifton–Pohl
torus and some of our examples are as stable as possible. This shows that in constrast with
the Riemannian Hopf theorem, the absence of conjugate points in the Lorentzian setting is
neither "special" nor rigid.
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1 Introduction

The absence of conjugate points on Riemannian tori has rigid effects on the metric structure.
A result by E. Hopf in 1948 for a two-dimensional torus [8], and by Burago and Ivanov
in 1994 in any dimension [6] states that any Riemannian torus with no conjugate points is
necessarily flat. However, it appears that the Hopf theorem does not hold in the Lorentzian
setting; in fact, Bavard and Mounoud proved in [1] that the so called Clifton-Pohl torus (see
Eq. (3)) has no conjugate points. The Clifton-Pohl torus and its few natural deformations (see
below) are the only known examples of Lorentzian metrics on the torus without conjugate
points. Recall that any compact connected Lorentzian surface is homeomorphic to the torus
or the Klein bottle. In this work, we give infinitely many new examples of geometrically non-
equivalent Lorentzian tori and Klein bottles without conjugate points; moreover, we prove
that some of them (including the Clifton–Pohl torus) admit a large space of deformations
among metrics without conjugate points.

Given a non-flat torus T with a non-trivial Killing field K , the flow of K induces a
free action of the group S1 on T (see the proof of [2, Theorem 3.25]). The orbits of K are
therefore periodicwith the sameperiod.Given theClifton-Pohlmetric, a first attempt to obtain
deformations of such a metric without conjugate points can be achieved in three different
ways: varying the period of the Killing field; acting by an homothety on the torus; or acting by
a "twist" along a (closed) orbit of K . Although the variations above give non-isometricmetrics
on the torus without conjugate points, these examples are all locally "the same", having all the
same universal cover (up to homothety). Less trivial deformations of the Clifton–Pohl torus
without conjugate points are obtained byMounoud in [9], asmetrics projectively equivalent to
the Clifton–Pohl torus; this gives a 2-dimensional family of Lorentzian tori without conjugate
points, with non-isometric universal cover.

1.1 Lorentzian surfaces without conjugate points: sufficient conditions

The frameworkof this paper is that of compactLorentzian surfaces admitting, like theClifton–
Pohl torus, a Killing vector field K . When K is timelike or spacelike, a result of Gutierrez,
Palomo and Romero in [7] shows that if the surface has no conjugate points, it must be flat.
In this paper, we suppose that K has a null orbit. When the metric is not flat, and K admits
a null orbit, we call (T , K ) a non-elementary torus.

In our first result, we show the existence of infinitely many new examples of compact
Lorentzian surfaces without conjugate points. The examples we obtain are Lorentzian sur-
faces with a Killing field. The description of these metrics involves some non-trivial material
from [2], which we shall introduce here in order to state properly the main results. Further
details are left to Sect. 2 of this paper.

Let (T , K ) be a non-flat torus, and let ˜T be a universal cover of T , with ˜K the lift of K
to ˜T . Then K has no singularity (a Killing field of a compact Lorentzian surface does not
vanish at any point, see [13, Lemma 4.1]). Locally, one of the two null foliations is defined
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by a vector field L such that 〈K , L〉 = 1, and the metric takes the form

2dxdy + f (x)dy2,

where L = ∂x , K = ∂y , and f is a y-independent scalar function. The local coordinate x
(defined up to translation and change of sign) is called a transverse coordinate. Hence f (x)
gives the norm of K in the transverse coordinate, and determines the metric locally. The
globalization of this picture cannot be done in general, even in the universal cover (when
none of the two null foliations is globally transverse to the Killing field). However, it appears
in [2] that there exists a (unique up to translation and change of sign) global submersion
x ∈ C∞(˜T ,R) with kernel the 1-dimensional vector space generated by ˜K , which coincides
locally with a transverse coordinate. Hence the norm of ˜K factorizes globally as follows

〈˜K , ˜K 〉 = f ◦ x, (1)

where f ∈ C∞(R,R) is a non-constant periodic function. Replacing K by aK , a ∈ R∗, and
changing x induces a right action of the affine group of the line R∗ ×R on f which consists
in replacing f (x) by a2 f (a−1x + b), for (a, b) ∈ R∗ × R. We denote by [ f ] the class of f
modulo the action of R∗ × R.

Conversely, given a non-constant periodic function f ∈ C∞(R,R), we can associate to it
a non-flat Lorentzian torus with a Killing field K , such that the norm of K factorizes as above.
The way to define such a metric from f is described in Sect. 2.1.3. This metric however is
not unique up to isometry. In [2, Theorem 5.29], the authors prove that if a non-elementary
torus with a Killing field (T , K ) has no conjugate points, then the foliation orthogonal to K
is a (finite) union of Reeb components. When we restrict to metrics satisfying this additional
property, given a non-constant periodic function f ∈ C∞(R,R) (modulo the action of
R∗ × R), there exists a unique (up to isometry) non-flat metric on the plane which is the
universal cover of a torus with a Killing field (T , K ), such that 〈˜K , ˜K 〉 = f ◦ x.

Now that we know this, we can state our first result

Theorem 1.1 Let f be a periodic function that satisfies the following properties:

i) f has simple zeros,
ii) f

′
changes sign once between two sucessive zeros of f ,

iii) f
′
. f

′′′ ≤ 0,
iv) ∃a ∈ R, f (a + t) = f (a − t),
v) f has two zeros in the smallest period of f .

Then, a torus (T , K ) such that the norm of K factorizes as in (1), and such that the foliation
orthogonal to K is a union of Reeb components, has no conjugate points.

So whenever there is a function f which verifies the conditions of Theorem 1.1, we can
associate to it a Lorentzian torus without conjugate points, and metrics we define from f1
and f2 are isometric if and only if [ f1] = [ f2]. Many explicit new (analytic) examples of
Lorentzian tori without conjugate points, as well as Klein bottles with the same property,
will be deduced from Theorem 1.1 in a very simple way.

The assumption (i) implies that the null orbits of ˜K are isolated and that the norm of ˜K
changes sign when crossing such an orbit transversally (see [2, Lemma 2.25]). In particular,
there exists only finitely many null orbits of K in T .

Remark 1.2 Each of these examples can be deformed to families of metrics without conjugate
points, in the same way as previously done with the Clifton–Pohl torus (changing the period
of the orbits of K , changing by homothety, twist or by projective deformation).
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1.2 Lorentzian surfaces without conjugate points: necessary conditions

The structure of compact Lorentzian surfaces with a one parameter group of isometries is
already studied in [2]. Although the property of beingwithout conjugate points doesn’t appear
to be strong enough to expect a rigidity phenomenon in this subclass of Lorentzian surfaces
(by rigidity phenomenon, we mean a strong consequence on the geometry of the surface, like
Hopf’s theorem in the Riemannian setting), [2, Theorem 5.29] gives obstructions for such tori
to be without conjugate points. In particular, it follows from this theorem that a Lorentzian
torus with a Killing field, without conjugate points, is either flat or non-homotopic to the flat
metric. Assuming condition (i) in Theorem 1.1 (which is in some sense generic), we give a
new obstruction for those tori to be without conjugate points. The leaves of the null foliations
are geodesics. If such a leaf is closed and incomplete, then it is affinely isomorphic to a Hopf
manifold of dimension one: ]0,∞[/x ∼ λx , λ playing the role of an affine length. In the
case of a Clifton–Pohl torus (Eq. (3)), there are 4 (closed) null orbits of the Killing field; they
are incomplete and they all have the same affine length. We extend this observation to the
general case of a torus without conjugate points, admitting a Killing field whose null orbits
are incomplete. We prove the following

Theorem 1.3 Let (T , K ) be a Lorentzian torus without conjugate points, with Killing vector
field K . Assume that the null orbits of K are incomplete. Then they have the same affine
length.

As an immediate corollary of this theorem, it appears that these tori are limits of Lorentzian
tori admitting a Killing field, and containing conjugate points (see Corollary 4.17 in this
paper).

1.3 Strategy of the proof of theorem 1.1:

The Jacobi equationLet us recall that no null geodesic in a Lorentzian surface has conjugate
points (see [10, page 291] for instance), so we restrict our attention to non-null geodesics.
Let γ be a geodesic of an n-dimensional Lorentzian manifold M . A Jacobi field is a vector
field along γ satisfying a differential equation called the Jacobi equation. There are many
equivalent definitions of conjugate points; the one we will be using in this paper is the
following: a pair of conjugate points on γ are points such that there exists a non-trivial Jacobi
field along γ vanishing at these points. When γ is not lightlike, we can suppose that this
vector field is orthogonal to γ ; and when M is a surface, this reduces to the differential
equation in one variable

u
′′ + εκu = 0, (2)

where κ is the sectional curvature along γ , and ε = ±1 is the sign of 〈γ̇ , γ̇ 〉.
If now M admits a Killing vector field K , one of the solutions of Eq. (2) is given by the

normal component of K on γ . In the sequel, this solution will be denoted by β, the same
notation used in [1].
Existence of maximal extensions Let (X , K ) be a connected Lorentzian surface with a
Killing field. A Lorentzian surface (X̂ , K̂ ) is an extension of (X , K ) if X̂ is connected, and
if there is an isometric embedding φ : X → X̂ such that φ∗(K ) = K̂ . Such a surface is said
to be maximal if it does not admit any non-trivial extension.
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A Clifton–Pohl torus, denoted by TCP , is the quotient of the manifold R2 − {0} equipped
with the metric

gCP = 2dxdy

x2 + y2
(x, y) ∈ R2 − {0}, (3)

by some non trivial homothety.
The proof that TCP has no conjugate points is done using a remarkable property: the

universal cover of TCP is a proper open subset of an extension 	̂, introduced in [1]. And
this extension is geodesically complete. Let γ be a geodesic of ˜TCP , and denote by γ̃ its
extension to 	̂. Some of the solutions of Eq. (2) defined over R vanish more than one time
on γ̃ , but there are never two such zeros in the universal cover of the Clifton–Pohl torus. This
is obtained through an explicit resolution of the Jacobi equations.

The possibility of extending the universal cover of a Lorentzian torus to a maximal
Lorentzian surface is not specific to the Clifton–Pohl torus. Let (T , K ) be a Lorentzian
torus with a non-trivial Killing field K , and let (˜T , ˜K ) be its universal cover. There exists a
maximal Lorentzian surface (E, KE ) homeomorphic toR2 such that (˜T , ˜K ) is isometrically
embedded in E [2, Theorem 3.25]. This extension is unique when some further hypotheses
are added on it; we do not recall that here. We prove that

Theorem 1.4 The extension E associated to a Lorentzian torus (T , K ) is geodesically com-
plete.

This makes these surfaces simple to deal with. When the torus is not flat, this extension
always contains conjugate points (see [2, Proposition 5.28]). So one has to prove that there
are never two such points in the domain in E corresponding to the universal cover of the
torus, for the family given in Theorem 1.1 above. What makes this possible is the fact that
this extension, precisely when (T , K ) is a non-elementary torus, is a proper extension of the
universal cover. Indeed, E is geodesically complete, but a non-flat torus with a Killing field K
is complete if and only if K has no null orbit (this was observed by Sanchez in [13]). It appears
in particular that the Lorentzian metrics without conjugate points obtained in Theorem 1.1
are geodesically incomplete. The existence of a complete and non-flat Lorentzian metric
without conjugate points is still an open question.

In this paper, the existence of conjugate points is studied from the point of view of the
oscillation theory of the Jacobi equation.

When condition iv) is added, we develop a rather simple point of view from which one
can conclude to the existence or not of conjugate points in the torus. In this case, the only
geodesics that could carry conjugate points are the (non-null) geodesics for which β vanishes
(at least) twice in the extension. Given such a geodesic γ of the extension E (which is defined
onR since E is complete), condition iv) is equivalent to the existence of some global isometry
of E preserving K . This isometry induces some symmetries on β, and it implies in particular
that the distance between two consecutive zeros of β is constant, equal to some τ > 0.
Furthermore, when the foliation orthogonal to K is a union of Reeb components (recall that
this is a necessary condition to the absence of conjugate points), one proves easily that if
γ intersects the domain in E corresponding to the universal cover of the torus, then it is
contained there on an interval of type I =]t0, t0 + τ [. Denote by V the vector space of the
solutions of (2), and set

d := inf
φ∈V�{0}{|t0 − t1|, ∃φ ∈ V � {0}, φ(t0) = φ(t1) = 0}.

The point is that there is no solution of (2) vanishing twice in I if and only if d ≥ τ . This
amounts to saying that the absence of conjugate points is equivalent to the fact that β realizes
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the minimum distance between two consecutive zeros of the solutions of the Jacobi equation.
This is the point of view we use to prove Theorem 1.1 above. The distance between these
zeros is studied by use of techniques from differential equation theory, provided in [3, 11]
and [5]. The idea used is the fact that there exists a close connection between the oscillation
problem of the Eq. (2) and the eigenvalue problem

u
′′ + λεκu = 0,

with suitable boundary conditions. This proof is an example of the interplay between geom-
etry, analysis and the theory of ordinary differential equations in the study of conjugate
points.

1.4 A large space of deformation

In the Riemannian setting, it is known from Hadamard’s theorem that non-positive curvature
implies that there are no conjugate points; therefore, it is easy to get open sets of Riemannian
metrics without conjugate points in the C2 topology. In the Lorentzian general setting, the
stability question is a little harder; in fact, the restriction on the sign of the sectional curvatures
is no help since the Jacobi equation involves also the type ε of the geodesic. If we drop the
assumption concerning the additional symmetries on the universal cover of the torus, we
show that the absence of conjugate points for a Lorentzian torus admitting a Killing field can
be expressed in terms of the positivity of some numeric function defined on an open subset
of the torus. The method used has the disadvantage of not providing a geometric ingredient
to construct metrics without conjugate points, but it suggests that one can expect a stability
result among the metrics admitting a Killing field. Denote by LK (T ) the space of smooth
Lorentzian metrics on the 2-torus T admitting a non-trivial Killing field. We obtain

Theorem 1.5 Ametric inLK (T ) close enough to theClifton-Pohlmetric for theC∞ topology,
and satisfying the condition in Theorem 1.3 above, has no conjugate points.

This theorem together with Theorem 1.3 above allow a very nice description of the neigh-
borhood of TCP in the closed (for the C∞ topology) set of metrics without conjugate points
admitting a Killing field: these are all neighbouring metrics whose null orbits have the same
affine length.

Actually, we prove a more general stability by deformation result in the last section of
this paper. This stability result ensures the existence of Lorentzian metrics without conjugate
points and admitting a Killing field, without the symmetries added in Theorem 1.1.

The paper is organized as follows: in Sect. 2 we introduce the fundamental tools and
notions from [2] dealing with the classification of compact Lorentzian surfaces with a Killing
field, and prove the geodesic completeness of the maximal extensions associated to such
surfaces. Sect. 3 is a study of the Jacobi equation regardless of geometry; we establish some
lemmas about the distance between the zeros of the solutions of such an equation. These
lemmas will be applied in Sect. 4 in the case of Lorentzian tori with a Killing field, in which
we characterize Lorentzian tori without conjugate points in the way presented before. The
obstruction in Theorem 1.3 will follow from this characterization. The last Section studies
the stability character of the property of being without conjugate points, and prove that some
of the examples obtained are as stable as possible in LK (T ).
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2 Universal extensions of Lorentzian tori with a Killing vector field

2.1 Structure of Lorentzian tori with a Killing vector field

All the facts we will be compiling in this section, dealing with the geometry of Lorentzian
tori admitting a Killing field, have been investigated in [2], in the more general setting of
Lorentzian surfaces with a Killing field. For convenience, we set up in the first place some
non-trivial vocabulary and notations, and then give the relevant results from [2] we will be
using in this paper without proofs. Let (X , K ) be a Lorentzian surface with a non-trivial and
complete Killing field K .

2.1.1 Local structure and adapted coordinates

Definition 2.1 (ribbons, bands and dominoes) LetU be a subset of X saturated by K . Suppose
K never vanishes on U ; we say that (U , K ) is

(1) a ribbon ifU is open, simply connected and if one of the null foliations inU is everywhere
transverse to K .

(2) a band (resp. a square) ifU is homeomorphic to [0, 1]×R (resp. [0, 1]2 � {0, 1}2), with
〈K , K 〉 vanishing on the boundary and not vanishing in the interior of U .

(3) a domino if U is open, simply connected, and K has a unique null orbit in U .

The connected components of X � {〈K , K 〉 = 0} are interior of bands, and the interior
of a band is a ribbon. A band is said to be spacelike (resp. timelike) if K is spacelike (resp.
timelike) in this band.

Let (U , K ) be a ribbon, and let p ∈ U . We can choose a null-geodesic γ passing through
p, maximal in U and transverse to K , such that 〈γ ′, K 〉 = 1. The saturation of the geodesic
by the flow of K gives a connected open set Uγ , which is equal to U when U is connected.
This gives coordinates in U , called adapted coordinates, in which the metric reads

2dxdy + f (x)dy2 (x, y) ∈ I × R, (4)

where L = ∂x is a null vector field parameterized by 〈L, K 〉 = 1 (and tangent to γ ), and
K = ∂y . The coordinate denoted by x , which is well defined up to translation and change of
sign, will be called the "transverse coordinate", or simply the x-coordinate. Thus, the norm
of K in the ribbon is given by f in the x-coordinate; it vanishes on the null orbits of K
contained in U .

The local chart in (4) cannot be globalized to X if and only if none of the two null
foliations is everywhere transverse to K in X , which amounts to saying that K has two
null orbits belonging to different null foliations. The latter fact is characterized in [2] by
the presence of a Reeb component in the foliation defined by the Killing field or that of the
orthogonal foliation.

Lemma 2.2 [2, Lemma 2.8] Let (B, K ) be a Lorentzian band. Denote by L a null foliation
in B transverse to one of the two connected components of ∂B. If L is everywhere transverse
to K in B, then the foliations defined by K and K⊥ are both suspensions (admit global
transversals). Otherwise, one of them is a Reeb component and the other is a suspension.

Thus, we have the following definition, resulting from the lemma:

Definition 2.3 A Lorentzian band (B, K ) is said to be:
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Fig. 1 A type I, type II and type III band

Fig. 2 The Clifton–Pohl torus has
4 bands of type II

(1) of type I: if the foliations defined by K and K⊥ are both suspensions.
(2) of type II: if the foliation of K is a suspension and that of K⊥ is a Reeb component.
(3) of type III: if the foliation of K is a Reeb component and that of K⊥ is a suspension.

The following figures represent the three types of bands; the foliation of K is represented
by black continuous lines, the orthogonal foliation by red dotted lines.

Remark 2.4 1. If a ribbon contains a band, then it is necessarily a type I band (for the two
null orbits of K on the boundary of a type II or a type III band belong to different null
foliations).

2. A type I band contains one maximal ribbon. A type II or type III band is covered by two
maximal ribbons whose intersection is the interior of the band.

3. Given a non-flat torus T with non-trivial Killing field K , the fact that the flow of K is a
free action of S1 ensures the existence of a closed curve everywhere transverse to K . It
follows that T does not contain type III bands.

4. From 1) and 3) we have that a non-elementary torus (T , K ) has only type II bands if
and only if its maximal ribbons are dominos.

2.1.2 The existence of local reflections

The presence of a Killing field leads to the existence of local reflections. Let U be a con-
nected component of X � {〈K , K 〉 = 0}. In U , the geodesic flow orthogonal to K can be
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parameterized by 〈K⊥, K 〉 = 0, 〈K⊥, K⊥〉 = ±1. The vector field thus obtained is invariant
by K , i.e. [K⊥, K ] = 0. This gives coordinates (u, v) ∈ I × R on U , in which the metric
reads ± du2 + h(u)dv2, where K⊥ = ∂u, K = ∂v . We observe that (u, v) �→ (u,−v) is
an isometry of U . This reflection sends K on −K and permutes the two null foliations. It is
called a "generic reflection".

So the reflection fixing a non-degenerate geodesic perpendicular to K is an isometry, but
unlike the Riemannian case, if the norm of K vanishes somewhere, then the local reflection
cannot be extended to the entire surface (see Fig. 2 above). In an adapted basis of the form
(4), the leaves of the foliation orthogonal to K are defined by y = G(x) + β, where G is a
primitive function of −1/ f and β ∈ R [2, Proposition 2.5]. And the generic reflections are
given by φ(x, y) = (x, 2(G(x) + β) − y), (x, y) ∈ I × R.

Remark 2.5 Let U be the interior of a band. If U is contained in a type III band, then any
generic reflection ofU extends to the type III band, and sends a null leaf of K in the boundary
to the other. If U is contained in a type I or type II band, the generic reflection cannot be
extended.

An atlas for (X , K ). If U denotes a ribbon in X and p ∈ U , we have seen above that the
choice of a null-geodesic γ passing through p gives rise to adapted coordinates in which the
metric writes

2dxdy + f (x)dy2,

where L = ∂x is a null vector field parametrized by 〈L, K 〉 = 1, and K = ∂y .
When 〈K , K 〉(p) �= 0, there exists another null-geodesic transverse to K and passing

through p, giving rise to another formula for the metric on an open set U ′ of X . On the
intersection U ∩ U ′, the norm of K doesn’t vanish, so there exists a generic reflection
that sends K on −K and permutes the two null foliations. The transition map is given on
U ∩U ′ by composing (x, y) �→ (−x,−y) with the generic reflection φ given by φ(x, y) =
(x, 2G(x) − y), where G is a primitive function of −1/ f .

This gives an atlas of X minus the zeros of K , such that on each local chart the metric
reads 2dxdy+ f (x)dy2, with K = ∂y , and transition maps are like above. This atlas is called
an adapted atlas for (X , K ).

Example 2.6 An atlas for the Clifton–Pohl torus. Choosing the right parametrization of the
null foliations, i.e. such that 〈L, K 〉 = 〈L ′, K 〉 = 1, we show that an atlas for the Clifton–
Pohl torus is given by open setsUi = Ii ×R (i ∈ Z/4Z), with Ii =] iπ2 , iπ

2 +π[, each of them
equipped with the metric 2dudv+sin(2u)dv2. A generic reflection onUi ∩Ui+1 is given by
φ(u, v) = (u, log| sin(2u)

1−cos(2u)
| − v); it sends K to −K and L to −L ′. On two local charts Ui

and Ui+1 where the metric is given by 2dudv + sin(2u)dv2 and 2du′dv′ + sin(−2u′)dv′2
respectively, one gets a change of coordinates by composing (u, v) �→ (−u,−v) with a
generic reflection.

2.1.3 Classification of non-elementary tori

When there is no null orbit of K , the metric in the universal cover is determined by the norm
of K like in the Riemannian case. If K has a null orbit, then the metric depends on additional
combinatorial data (which determines the type of bands), described in [2, Proposition 5.2]. As
mentioned in the introduction of this paper, there is a way to extract a non-constant periodic
function f ∈ C∞(R,R) and some submersion x ∈ C∞(˜T ,R) such that 〈˜K , ˜K 〉 = f ◦ x.
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As we will need to understand how x and f depend on the metric in order to prove Lemma
2.11 and Lemma 2.12, we will give more details on their construction in this section.

Let (T , K ) be a non-flat torus, and let ˜T be a universal cover of T , with ˜K the lift of K
to the universal cover. As mentioned in the introduction of this paper, the norm of ˜K can be
written 〈˜K , ˜K 〉 = f ◦x, where x ∈ C∞(˜T ,R) is defined up to translation and change of sign,
and f ∈ C∞(R,R) is a non-constant periodic function. To see this, consider a positively
oriented hyperbolic basis (X , Y ) inX(˜T ), i.e. 〈X , X〉 = 〈Y , Y 〉 = 0 and 〈X , Y 〉 = 1. Define a
volume form ν by setting ν(X , Y ) = 1 (ν does not depend on the choice of this basis). Define
a 1-form ω := i

˜K ν: this form is closed, hence exact since ˜T is simply connected. So there
exists a submersion x ∈ C∞(˜T ,R) defined (up to translation) by ω = dx, inducing a global
diffeomorphism between the space of leaves of ˜K and R. Therefore, there exists a periodic
function f ∈ C∞(R,R) such that the norm of ˜K in the universal cover factorizes as before.
The submersion x coincides, up to translation and change of sign, with the x-coordinate of
any local chart.

Conversely, given a non-constant periodic function f ∈ C∞(R,R), we can associate to it
a Lorentzian torus with a Killing field, such that the norm of K factorizes as above. This can
be done in the following way: let (pk) denote a sequence of zeros of f , taken in an increasing
order, such that any interval Ik =]pk , pk+1[ contains at least one zero of f . Define ribbons
Uk = (Ik ×R, (−1)k2dxdy + fk(x)dy2), where fk = f|Ik . Then glue the open sets Uk and
Uk+1 by means of the local isometries ψk(x, y) = (x, 2G(x) + y), where G is a primitive
function of −1/ f on Ik ∩ Ik+1. The surface we obtain is the universal cover of a torus,
equipped with a Killing field given locally by K = ∂y . The metric depends on the choice of
(pk)k . Each time two ribbons Uk and Uk+1 are glued by means of a generic reflection, the
closure of their intersection is a type II band in the torus. It follows from Remark 2.4 that if
the Ii ’s are chosen so as each of them contains only one zero of f , we get a surface all of
whose bands are of type II. If we choose some Ii with an arbitrary number of zeros of f in
it, the torus shall contain type I bands also.

A non-trivial fact from [2, Proposition 5.2] is that there is a bijection between isometry
classes of universal cover of non-elementary tori (T , K ), such that the foliation orthogonal to
K is a (finite) union ofReeb components, and periodic non-constant functions f ∈ C∞(R,R)

which vanish.
Given a non-flat torus (T , K ), such that f ∈ C∞(R,R) is the function induced by the

norm of K , the construction above gives an atlas for the universal cover of T . We say that
we have a structure modeled on Eu

f , or Eu
f -structure, on (˜T , ˜K ) which, locally, is only

determined by the function f . Such a structure exists on a connected and Lorentzian surface
(X , K ) each time the norm function of the Killing vector field factorizes as above (see [2,
Proposition 3.19]).

Definition 2.7 (Minimal number of bands) We assume that the connected components of
{ f �= 0} don’t accumulate. Define n to be the number of zeros of f on the smallest period.

For the Clifton–Pohl torus we have n = 2; it is itself a two-sheeted covering of a torus
containing 2 bands and having the same Eu

f structure as TCP .
We won’t consider the case in which these connected components accumulate since the

locally finite hypothesis is a necessary condition for a torus admitting a Killing vector field
to be without conjugate points (see [2, Theorem 5.29]).
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2.1.4 Maximal extensions

The possibility of extending the universal cover of a Lorentzian torus into a Lorentzian surface
all of whose null geodesics are complete (we say L-complete) will be used in an essential
way in this paper; we call the Lorentzian surface so obtained the "universal extension" of the
torus. We shall recall some essential properties of this surface. Let I be a non-empty open
interval of R and let f : I → R be a smooth function. Denote by R f = (R, K ) the surface
(R = I ×R, 2dxdy + f (x)dy2), (x, y) ∈ R, with a Killing vector field K = ∂y ; it is called
the "ribbon associated to f ". R f − refers to the ribbon associated to f −, defined for −x ∈ I
by f −(x) = f (−x).

Theorem 2.8 ([2, Proposition 3.3, Theorem 3.25]). Let (T , K ) be a Lorentzian torus with
a non-trivial Killing vector field K , (˜T , ˜K ) its universal cover. Let f : R → R denote the
function induced by 〈˜K , ˜K 〉 in the way set before. There exists a maximal Lorentzian surface
(Eu

f , K
u) homeomorphic to R2 such that (˜T , ˜K ) is isometrically embedded in Eu

f , and Eu
f

is reflexive and L-complete. This extension is unique and every maximal ribbon contained in
(Eu

f , K
u) is isometric to either R f or R f − .

Remark 2.9 Since f is periodic, when it vanishes, the connected components of the set
{〈Ku, Ku〉 �= 0} in Eu

f are contained in squares. In a ribbon R f of Eu
f , they are in one-to-one

correspondance with the connected components of { f �= 0} in R.

The Lorentzian surface Eu
f satisfies, in addition, the following remarkable reflexivity

property:

Proposition 2.10 ([2, Lemma 3.10]). The generic reflections in any ribbon contained in Eu
f

extend to global isometries of Eu
f .

Let (T , K ) be a Lorentzian torus with Killing field K , and let Eu
f be the extension of the

universal cover, given in Theorem 2.8 above. This Lorentzian surface is obtained using two
operations. Roughly speaking, they consist in:

1. gluing copies of R f , the maximal ribbon defined above, along the bands, using generic
reflections. This operation extends the null-geodesics interior to the bands of the ribbons
into complete geodesics;

2. adding saddles: a saddle is obtained in [2, Proposition 2.29] as the extension of a domino
of ˜T (whose unique null orbit of ˜K is incomplete) by a simply connected surface con-
taining a unique zero of ˜K . This extends the null orbits of ˜K which are geodesically
incomplete into complete geodesics. With a good choice of the generic reflections in the
first operation, one can make this extension compatible with the surface we get in 1 (see
the proof of [2, Proposition 3.3] for details). Denote by U such a domino, and by ˜U the
extension. WriteU = I ×R, 2dxdy+ f (x)dy2 in the local coordinates, with f (0) = 0
and f

′
(0) = λ, λ �= 0 (Remark 4.15). The metric on ˜U reads ([2, Proposition 2.29])

1

λ

[

v2h(uv)du2 − 2

(

j(uv) + 1

j(uv)

)

dudv + u2h(uv)dv2
]

; uv ∈ I , v ∈ R, (5)

where x = uv; j, h ∈ C∞(I ,R), such that j(x) = ∫ 1
0 f

′
(t x)dt and h(x) = ∫ 1

0 l
′
(t x)dt,

with l(x) = j(x) − 1
j(x) , and the Killing field corresponds to K = 2

λ
(u∂u − v∂v).

Wewant to knowhow these objects, i.e. R f and the saddles, depend on themetric.Actually,
we will see that if the Killing field depends smoothly on the metric, then these objects do,
too.
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The space X(T ) of smooth vector fields on T , together with LK (T ), the space of smooth
Lorentzian metrics on the 2-torus, admitting a Killing vector field, are equipped with the Cr

topology.

Lemma 2.11 Let (g, K ) ∈ LK (T )×X(T ) a non-flat metric on T , such thatLK g = 0, and let

(gn, Kn) be a sequence in LK (T )×X(T ) such that ∀n,LKn gn = 0 and (gn, Kn)
Cr→ (g, K ).

Then the sequence of ribbons R fn , where fn denotes the function induced by the norm of Kn,
converges to R f , where f is induced by the norm of K , for the Cr topology.

Proof For all n, one can choose a Lorentzian volume form νn that defines the transverse
coordinate xn by setting i

˜Kn
νn = dxn and xn(p) = 0, such that the sequence νn converges

to ν. By definition xn converges Cr to x on every compact subset of ˜T . Now, take a curve
c everywhere transverse to ˜K and ˜Kn for n large enough, cutting each leaf of ˜K only one
time. Define I = {c(t), t ∈ R} on which x and xn are diffeomorphisms. Writing f =
g(˜K , ˜K ) ◦ x−1, we get the Cr convergence of fn to f on every compact subset of R, hence
everywhere, since they are periodic. This proves the lemma. ��
Lemma 2.12 Let (U , K ), U = I × R, be a Lorentzian domino where the unique null orbit
of K (represented by x = 0) is incomplete. Denote by g the metric on U and let (gn, Kn) be

a sequence of metrics on U such that (gn, Kn)
Cr→ (g, K ), with r ≥ 2. Then, there exists a

neighborhood J of 0 such that the extension of V := J × R for the metric gn, denoted by
˜Vn, converges Cr−2 to ˜V , the extension for the metric g.

Proof Before starting the proof, let us state the following fact:

Fact 2.13 let Fn be a sequence of functions defined on a compact manifold M with values in
R, which converges uniformly to a function F. Suppose that F admits a unique zero in M
-denote it by p, and that Fn admits a unique zero pn in M for all n ∈ N. Then the sequence
pn converges to p in M.

Now, let p be a point on the null orbit of K in U ; the transverse coordinate for the metric
g satisfies x(p) = 0. On a neighborhood of this orbit, there is a unique null orbit of Kn for all
n but a finite number (the zero of f inU is simple by Remark 4.15), so let pn be a point on it
such that pn converges to p (this is possible by Fact 2.13 above). Denote by xn ∈ C∞(U , In)
the transverse coordinate of gn such that xn(pn) = 0. Since In converges to I and fn is Cr

close to f , we can find a neighborhood J of 0 on which f and fn are all defined for n big
enough, with fn having only one zero on J . The conclusion of the lemma follows then from
Eq. (5) that gives the explicit expressions of the extensions. ��
Remark 2.14 We point out that these lemmas state the convergence of the ribbons and the
saddles as abstract objects related to the metric, i.e. depending only on f . We didn’t say
anything about the local coordinates (x, y) and (u, v). Actually, we will see in Sect. 5.1 that
these local charts depend smoothly on the metric.

2.2 Completeness of the universal extensions of non-elementary tori

We know from [1] that the extension associated to the Clifton–Pohl torus is complete. In this
section, we prove that this is true for any extension Eu

f , with f periodic. Null-completeness
being already obtained, what we have to show is that non-null geodesics are complete.
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Theorem 2.15 The extension Eu
f associated to a Lorentzian torus (X , K ) is geodesically

complete.

The case in which f does not vanish follows from a result of Romero and Sanchez
[12], who proved that a Lorentzian compact manifold (M, g) with a timelike Killing field
is geodesically complete. In dimension 2, if g is a Lorentzian metric, then −g is also a
Lorentzian metric, so taking −g if necessary, we can suppose, when f does not vanish, that
f < 0, which gives the completeness.
Henceforth, we suppose that f vanishes. The length of a band (B, K ) is the length of any

maximal null geodesic α of B such that 〈α′, K 〉 = 1 (this is well defined for any two such
geodesics are mapped to each other by an element of the flow of K composed possibly with a
generic reflection of the band). Since f is periodic, the bands of Eu

f are contained in squares
(Remark 2.9), hence the lengths of the bands are necessarily finite.

Let γ be a non-null geodesic in Eu
f . Denote by V the unit vector field tangent to γ , and

N the vector field along γ orthogonal to V , such that the basis (V , N ) is orthonormal and
positively oriented. Asmentioned in the introduction of this paper, we denote by β the normal
component of K on γ ; it is a solution of the Jacobi equation. Set

Ku = CV + βN .

Then C = ε〈V , Ku〉, where ε := 〈V , V 〉, is a constant called the Clairaut constant (see [1],
p. 3), and β = −ε〈Ku, N 〉 is a solution of the Jacobi equation. Notice that if Ku(p), p ∈
γ , is not degenerate, β(p) = 0 if and only if γ is tangent to Ku at p. Finally, we have
〈Ku, Ku〉 = ε(C2 − β2).

A maximal geodesic γ may have two different behaviors: either it leaves any maximal
ribbon contained in Eu

f , or it remains in a maximal ribbon provided the geodesic parameter
t goes close enough to the limit. In the second case, we shall consider two behaviors again:
set I = {x(γ (t))}; as t ranges over the domain of γ , either I is bounded, in which case the
geodesic remains in a band as t approaches the limit of the domain of γ , or I is unbounded.
Observe that γ leaves a maximal ribbon if and only if it crosses a type II or a type III band,
for a ribbon may have only type I bands (Remark 2.4).

Write 2dxdy + f (x)dy2 (x ∈ I ) for the metric in local coordinates. The equations
〈γ ′(t), γ ′(t)〉 = ε and 〈γ ′(t), Ku〉 = εC in the (x, y)-coordinates read:

2x ′(t)y′(t) + f (x)y′(t)2 = ε (6)

x ′(t) + f (x)y′(t) = εC (7)

We get

f (x)y′(t)2 − 2εCy′(t) + ε = 0, (8)

and

x
′
(t)2 = C2 − ε f (x). (9)

These equations shall be used in the proofs of the different lemmas that follow.

Lemma 2.16 Let γ be a non-null geodesic such that β vanishes at most one time. If γ

remains in a band for t large enough, it asymptotically approaches a leaf of K u; if γ is not
perpendicular to Ku, this leaf is either timelike or spacelike, depending on the type of γ .

If a geodesic is somewhere orthogonal to Ku , then it is everywhere orthogonal to Ku , since
the scalar product 〈V , Ku〉 is constant along a geodesic (Clairaut’s constant). In consequence,
the foliation orthogonal to Ku is a geodesic foliation.
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Before we start the proof of the lemma, we need to make the following easy observation:
Observation: Let (R, K ) be a ribbon with adapted coordinates (x, y) ∈ I × R, and let
p ∈ R. Given C ∈ R � {0}, we have two cases:

1) 〈K (p), K (p)〉 = 0: in this case, there is a uniqueU ∈ Tp(R) such that 〈K (p),U 〉 = C
and 〈U ,U 〉 = 1, and this vector is defined by U = (C, 1

2C ).
2) 〈K (p), K (p)〉 �= 0: there are two vectors U1,U2 ∈ Tp(R) such that 〈K (p),U 〉 = C

and 〈U ,U 〉 = 1. In the (x, y) coordinates, they are given by

U1 =
(

√

C2 − f (p),
C − √

C2 − f (p)

f (p)

)

, (10)

U2 =
(

−
√

C2 − f (p),
C + √

C2 − f (p)

f (p)

)

, (11)

Only U1 has positive first coordinate. And we have

C f (p) Ux
1 U y

1

+ + + +
+ − + +
− + + −
− − + +

where (Ux
1 ,U y

1 ) are the coordinates of U1.

Proof Let γ : [0, b[→ X be such a geodesic, with γ ([0, b[) contained in some band of X .
Provided we go far enough out in γ , we may suppose that the geodesic is transverse to Ku in
the band. If we see γ in the (x, y) coordinates, this amounts to saying that the derivative x ′(t)
does not vanish on γ ; the x-coordinate is therefore strictly monotone. Furthermore, x(t) is
bounded since γ is contained in a band (and the bands have finite length), hence converges
to a constant x0. Moreover, the y-coordinate is strictly monotone on γ (y′(t) never vanishes
for non-null geodesics). If y converges to y0 on γ , it is easy to see that the geodesic can
be extended beyond the point p = (x0, y0). Indeed, following the proof of Lemma 8 p.130
[10], take a convex neighborhood V of p (an open set is said to be convex provided it is a
normal neighborhood of each of its points). The geodesic γ is contained in V for t ≥ a, for
some a > 0; set q = γ (a). In particular, there is a unique geodesic segment α : [0, 1] → T
joining p and q , that lies entirely in V . This geodesic coincides with γ and extends it past p.
It follows that the y-coordinate goes to infinity on γ while the geodesic approaches the leaf of
Ku corresponding to x0. Now, we want to prove that x ′ tends to 0.We start with the following
fact:

Fact 2.17 If the leaf of K u corresponding to x0 is not a null orbit of K u, i.e. f (x0) �= 0, then
x ′ tends to 0 on γ ; in particular, C2 = ε f (x0).

Indeed, assume that f (x0) �= 0; it appears from Eqs. (7) and (9) below that both x ′(t)
and y′(t) converge as x goes to x0 on γ , with a finite limit. Now regard x as a function of
y and write dx

dy = x ′(t)
y′(t) ; this derivative converges on γ ; denote its limit by l ∈ R̄. Of course

this limit cannot be infinite; indeed, x regarded as a function of y is strictly monotone and

123



Geometriae Dedicata (2023) 217 :90 Page 15 of 45 90

tends to a constant while y goes to infinity; so if dx
dy converges to l, this limit is necessarily

zero. The conclusion that x ′(t) tends to zero is straightforward, and shows, using Eq. (9),
that the leaf of Ku corresponding to x0 has the same type as γ . It follows from this fact that
if f (x0) �= 0 then γ asymptotically approaches the leaf of Ku corresponding to x0.

Now, to prove that x ′ tends to 0 as t tends to b, we distinguish two different cases:
Case where C = 0: In this case, Eq. (9) below reads x ′(t)2 = −ε f (x). This yields

f (x0) = 0 using the previous fact, hence x ′ → 0.
Case where C �= 0: Without loss of generality we can assume that γ is spacelike. We

will show that f (x0) �= 0, which will prove the lemma. We may suppose that x ′ > 0 on γ ,
by changing Ku to −Ku in the local chart, if necessary. Suppose, contrary to our claim, that
f (x0) = 0, and denote by γ∞ (resp. γ̃∞) the corresponding null orbit of Ku (resp. the image
of γ∞ by a generic reflection of the band). In the type III band containing γ , γ∞ and γ̃∞, the
space of the leaves of Ku is a simple branched line (thus a non-Hausdorff space), in which
the branch points correspond to the null orbits of Ku : γ∞ and γ̃∞. The claim that x goes to
x0 on γ , with f (x0) = 0, means that γ approaches one of the two branch points, i.e. either
γ∞ or γ̃∞.

We distinguish two different behaviors of γ according to the sign of C . First, assume that
C > 0; in this case, it follows from the observation preceding the proof that x ′(t), y′(t) > 0
for all t ∈ [0, b[. We will show that γ (extends) and cuts γ∞ transversally. Let q be a
point on γ∞, and denote by α the geodesic tangent to V ∈ Tq(X), such that 〈V , Ku(q)〉 =
C and 〈V , V 〉 = 1; it appears from the first part of the observation above that the two
coordinates of α′ at q are positive, hence remain positive all along the geodesic. Now take
τ ∈ [0, b[ such that for t ≥ τ , γ is transverse to Ku (the existence of τ is guaranteed
by the assumption that β does not vanish for t close enough to the limit); denote by xτ

the coordinate of the orbit of Ku intersecting γ at γ (τ). From C2 = β2 + f , one gets
C2 ≥ supt≥τ f (γ (t)), hence C2 > sup[xτ ,x0] f (x). Using this together with Fact 2.17, we
see that α, whose Clairaut’s constant is also C , is defined and cuts all the leaves of Ku on the
segment [xτ , x0] transversally. So by moving q on γ∞ by the flow of Ku if necessary, one
can suppose that γ and α intersect at a point p of the orbit of Ku having coordinate xτ . At
this point, we have 〈γ ′(p), Ku(p)〉 = 〈α′(p), Ku(p)〉 = C , and the coordinates of α′(p) are
both positive. Now using the observation above, we see that in the interior of a band, only one
of the two vectors satisfying 〈U , K 〉 = C and 〈U ,U 〉 = 1, has the additional property that
the first coordinate is positive. This clearly forces α′(p) = γ ′(p), hence γ extends beyond
the band by cutting γ∞ transversally. Of course this contradicts our assumption, and proves
that actually, f (x0) > 0.

Now, if C < 0, we prove that γ cuts γ̃∞ transversally, leading to the same kind of
contradiction as before. To deal with this case, define β to be the image of γ by a generic
reflectionφ of the band. Recall thatφ(x, y) = (x, 2G(x)−y), whereG is a primitive function
of −1/ f . Since φ sends Ku to −Ku , the Clairaut’s constant of β is C ′ := −C > 0. Besides,
β ′ = φ∗γ ′ = (x ′, −1

f (x) (2x
′ + f (x)y′)) in the (x, y) coordinates. Write 〈γ ′(t), γ ′(t)〉 =

y′(2x ′ + f y′) = 1. When f < 0 (resp. f > 0), we have x ′ > 0 and y′ > 0 (resp.
x ′ > 0 and y′ < 0), hence 2x ′ + f y′ > 0 (resp. 2x ′ + f y′ < 0). It follows that in both
cases, both coordinates of β ′ are positive. We are now in the same situation as before, so
repeating the previous argument shows that β can be extended beyond the band by crossing
γ∞ transversally. Consequently, γ also extends beyond the band by cutting the image of γ∞
by the generic reflection transversally. This leads again to a contradiction, and finishes the
proof. ��
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Proposition 2.18 Let γ be a non-null geodesic such that β vanishes at most one time. If γ

lies in a band after a certain while, it is complete.

Proof According to the previous lemma, the geodesic asymptotically approaches a leaf of
Ku .

Eq. (9) yields

t(x0) − t(x) =
∫ x0

x

dx
√

C2 − ε f (x)
.

Suppose C = 0; in this case, x0 is not a simple zero of f , for if x0 is a simple zero of f ,
the corresponding null orbit of Ku is extended in Eu

f by adding a saddle point (see [2] for
details), and γ leaves the band through it. Thus the above integral goes to infinity. Now, if
C �= 0, γ approaches a non-null orbit of Ku so that f (x) is bounded away from 0 as γ goes
to this orbit; it follows from (8) that y′(t) is bounded. Since y goes to infinity on γ , the latter
is necessarily complete. ��

Lemma 2.19 Let γ be a non-null geodesic not orthogonal to Ku. Assume γ cuts a null orbit
of K u, denoted by l. Then

(i) γ does not cross a type II band containing l;
(ii) if γ crosses a type III band containing l, γ is tangent to K in that band;
(iii) if β does not vanish, γ lies in the maximal ribbon containing l.

Proof (i) By definition, the foliation orthogonal to Ku in a type II band is aReeb component,
so a geodesic that crosses a type II band is tangent somewhere to a leaf of the orthogonal
foliation, hence coincides with it, since the leaves of this foliation are geodesics.

(ii) If γ crosses a type III band containing l, β vanishes in that band. Indeed, the foliation
of Ku in a type III band is a Reeb component, so a geodesic that crosses a type III band
is tangent to Ku somewhere. (iii) By (ii), γ doesn’t cross a type III band containing l. It
doesn’t cross a type II band either by (i), so it lies in the maximal ribbon containing l.

��

We now go back to the proof of Theorem 2.15:

Proof When f does not vanish, i.e. Ku is either timelike or spacelike, the torus is obviously
complete; indeed, in this case, | inf〈Ku, Ku〉| > 0, and for any non-null geodesic γ : [0, b[→
T , Eqs. (7) and (9) imply that the closure of the image of γ

′
in T (T ) is compact. The same

reasoning can actually be adapted to null geodesics, so that Eu
f = ˜T . More generally, if M

is a compact Lorentzian manifold, with a timelike (or spacelike) Killing vector field, then M
is complete, like in the Riemannian case. So now, assume that f changes sign.

1st case: β vanishes at least twice on γ

Under this assumption, γ is preserved by a translation of the parameter t of the geodesic; we
call it periodic (see Lemma 4.8 for a proof); this gives a complete geodesic.

It appears from the proof of Lemma 4.8 that either γ remains in a band or it leaves any
maximal ribbon of Eu

f . The first situation occurs when β vanishes twice in the interior of a
band; in this case, γ is invariant by the action φτ of the flow of Ku , for a certain τ ∈ R.

2nd case: β vanishes at most once on γ

In this case, γ remains in a maximal ribbon after a certain while, by Lemma 2.19 above. If
β vanishes, set t = 0 at this point; if it doesn’t vanish, take an arbitrary point p on γ and set
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t = 0 at this point. Let I = {x(γ (t)), t > 0}. Suppose that I is unbounded. Fix a band B0 in
the ribbon; in this band

t(x1) − t(x0) ≥
∫ x1

x0

1
√

C2 − m0

dx = a0,

with m0 = inf
B0

ε f ≤ 0. Now recall that f is periodic, so γ crosses infinitely many such

bands (isometric to B0), and since the time γ takes to cross a band depends only on C and f
on this band, the conclusion follows easily.

We are left with the case in which I is bounded. In this case, γ remains in a band for t
close enough to the limit; the completeness of γ follows from Proposition 2.18. ��
Remark 2.20 This result holds for any extension Eu

f , with f bounded.

Proof All we have to check is the completeness for a geodesic γ that remains in a maximal
ribbon, with unbounded I . We have from the previous proposition

t(x1) − t(x0) =
∫ x1

x0

dx
√

C2 − ε f (x)
, x1 > x0

where x0 is the coordinate of an orbit of Ku cutting γ . Since f is bounded, we have

t(x1) − t(x0) >

∫ x1

x0

dx√
C2 + M

,

where M is a majorant of f on R. Now, I is assumed to be unbounded; therefore, x1 tends
to infinity on γ , so that the above integral goes to infinity as x1 → ∞, which is the desired
conclusion. ��

3 Study of the Jacobi equation

Given a Lorentzian surface with a Killing vector field K , the Jacobi equation along a non-null
geodesic γ writes:

u′′ + εκu = 0, (12)

where κ(t) is the curvature along the geodesic γ (t), t ∈ I . The restriction on the sign of the
sectional curvature in the Riemannian setting leads to deep knowledge about the dynamics
of the geodesic flow, through the behavior of the Jacobi fields. Unfortunately, this hypothesis
makes no sense in the Lorentzian setting, since the quantity involved in the Jacobi equation in
this case is εκ , where ε is the type of the geodesic. So in this Section, we shall investigate some
properties of the solutions of the differential Eq. (12) under certain restrictive assumptions on
the function κ(t). The results will be applied in the case of a Lorentzian torus with a Killing
vector field in the next section.

Lemma 3.1 (see [1, Remark 1.3]). Given two independent solutions of the Jacobi equation,
between two zeros of one solution, there is one and only one zero of the other.

Now, denote by s and c the linearly independent solutions of (12) satisfying
{

s(0) = 0
s′(0) = 1

and

{

c(0) = 1
c′(0) = 0
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It’s easy to check that (cs′ − c′s)(t) = (cs′ − c′s)(0) = 1 for all t ∈ I . Assume κ(t) is
periodic, of period 2τ . Denote by A the endomorphism of the vector space V of the solutions
of (12) (generated by s and c), and given by

A : V −→ V

u(t) �−→ u(t + 2τ)

Eq. (12) has a periodic solution if and only if the endomorphism A has eigenvalue 1; in this
case, the periodic solutions of the equation are exactly the eigenvectors associated with this
eigenvalue.
The zeros of a non-trivial solution φ of (12) are simple, because φ(a) = φ

′
(a) = 0 for some

a implies φ = 0. Now, let ζ1 < ζ2 be two consecutive zeros of a solution of (12). By Lemma
3.1, there is a unique zero ζ of s in [ζ1, ζ2[. Denote by P the set of all such pairs of zeros,
for all the non-trivial solutions of (12), and define

P+ = {(ζ1, ζ2) ∈ P, s′(ζ ) > 0} and P− = {(ζ1, ζ2) ∈ P, s′(ζ ) < 0}.

Lemma 3.2 (Separation of zeros) Consider the differential Eq. (12). Suppose we have the
following conditions:

1) κ(t) is even and periodic, of period 2τ . Under this condition, s is odd and c is even.
2) s is periodic, of period 2τ , with s > 0 on ]0, τ [.
Denote by α > 0 a value of s. Define

Sα = {t ∈ R, |s(t)| = α}.
Suppose that α is such that Sα doesn’t contain any zero of s′; Sα is then a discrete set. Then:

– two consecutive zeros in P+ of any solution of (12) are separated by two distinct elements
of Sα if and only if c(t0) + c(t1) ≥ 0, where t0, t1 are the smallest positive consecutive
reals in Sα .

– two consecutive zeros in P− of any solution of (12) are separated by two distinct elements
of Sα if and only if −c(t

′
0)− c(t

′
1)+2 c′(τ )

s′(τ )
s(t

′
0) ≥ 0, where t

′
0, t

′
1 are the biggest elements

< τ in Sα .

Proof We start with the following observation: consider two independent solutions of (12)
with a1 and a2, b1 and b2 the two respective zeros in [−τ, τ ] such that a1 < b1 and a2 <

b2; Lemma 3.1 ensures the existence of a one-to-one correspondence between ]a1, b1[ and
]a2, b2[ that sends t ∈]a1, b1[ to the unique zero in ]a2, b2[ of the solution (taken up to a
multiplicative constant) vanishing at t .

When κ is even, s1(t) := −s(−t) (resp. c1 := c(−t)) is also a solution of (12) with
the same initial conditions as s (resp. c). Hence s is odd and c is even. Now, since we have
an action of the operator A on the space V of the solutions of (12), it suffices to show this
when ζ = 0 and ζ = τ . Denote by φ0 and φ1 the two solutions vanishing at −t0 and −t1
respectively, defined by

φi (t) = c(t) + c(ti )

s(ti )
s(t), i = 0, 1.

By definition, s(t0) = s(t1). An easy computation then gives for i = 0, 1:

• φi (−ti ) = 0
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• φi (0) = 1
• φi (t1−i ) = c(t0) + c(t1).

When c(t0) + c(t1) ≥ 0, φi (0) and φi (t1−i ) are both non-negative so that φi doesn’t vanish
on [0, t1−i [ by Lemma 3.1. Denote by z0 and z1 the zeros of φ0 and φ1 respectively in [0, τ ];
we thus have z0 ≥ t1 and z1 ≥ t0, the last inequalities being reversed when c(t0)+c(t1) < 0.
Hence, using the above observation, we deduce that when c(t0) + c(t1) ≥ 0 is satisfied, two
consecutive zeros in [−τ, τ ] of a solution of the Jacobi equation are always separated by two
elements of Sα . Now, suppose that c(t0)+c(t1) < 0, one can find, using the same observation
as above, a solution of (12) vanishing at z0 and z1 in [−τ, τ ], such that −t0 < z0 < 0 and
0 < z1 < t1.

In the same way, two consecutive zeros in [0, 2τ ] of a solution of the Jacobi equation are
separated by two elements of Sα if and only if

ψ(2τ − t
′
1) + ψ(2τ − t

′
0) ≥ 0,

where ψ is the solution satisfying ψ(τ) = 1, ψ
′
(τ ) = 0. This solution is given by ψ(t) =

1
c(τ )

(c(t) − c′(τ )
s′(τ )

s(t)). Now an easy computation gives

c(2τ − t) = c(t) − 2
c′(τ )

s′(τ )
s(t).

Indeed, c(2τ − t) is again a solution of (12): write c(2τ − t) = λ1c(t) + λ2s(t). Setting
successively t = 0 and t = τ yields λ1 = c(2τ) = 1/s′(2τ) = 1, and λ2 = −2c′(τ )/s′(τ ).
Now, observe that c(τ ) < 0 for, if not, c would vanish twice in [0, τ ], and this is not possible
by lemma 3.1. This ends the proof. ��

Notation: Fix α > 0 a value of s, and consider an interval I of R. We say that I satisfies
the property (P) if for any two consecutive zeros z0 < z1 of a solution of (12), such that
z0 ∈ I , z0 and z1 are separated by two distinct elements of Sα .

Definition 3.3 We say that an interval I =]x, y[ ofR is a domino associated to α if x, y ∈ Sα

and I contains only one element of Sα .

If γ is a geodesic tangent to K at t = 0, then β(t) = β ′(0)s(t). So when α = |C |/|β ′
(0)|,

where C is the Clairaut constant related to γ , points of Sα correspond to the points where
|β(t)| = |C |, which are exactly the points of γ where the norm of K vanishes. So if I is
a domino of R, the geodesic restricted to I lies in a domino of the surface, in the sense of
Definition 2.1.

Corollary 3.4 Suppose the conditions of Lemma 3.2 are satisfied, and that in addition, there
exist exactly two elements of Sα in [0, τ ], hence between any two zeros of s. Keeping the same
notations as in Lemma 3.2, we have:

– a domino containing 0 has the property (P) if and only if c(t0) + c(t1) ≥ 0,
– a domino containing τ has the property (P) if and only if−c(t0)− c(t1)+ 2 c′(τ )

s′(τ )
s(t0) ≥ 0.

Lemma 3.5 Consider the differential Eq. (12). Suppose the conditions of Lemma 3.2 are
satisfied, and that in addition there exist exactly two elements of Sα in [0, τ ]. Suppose further
that κ is τ periodic and s is τ antiperiodic, i.e.

s(τ + t) = −s(t),∀t ∈ R.

Then a domino containing 0 has the property (P) if and only if s realizes the minimum
distance between the zeros of the solutions of the Eq. (12).
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Proof An easy computation gives

c(τ − t) = 2
c(τ/2)

s(τ/2)
s(t) − c(t) ∀t ∈ R. (13)

In this case, we have t1 = τ − t0 so that c(t0) + c(t1) ≥ 0 reads c(τ/2) ≥ 0.
Let z0 and z1 be two any consecutive zeros of a solution of Eq. (12). If φ is a solution of (12),
φ(. + τ) is also a solution, so one can assume that z0 ∈] − τ, 0[. Write

φ(t) = c(t) − c(z0)

s(z0)
s(t),

we have φ(z0) = 0, φ(0) = 1, and φ(z0 + τ) = −2 c(τ/2)
s(τ/2) s(z0), by formula (13) above.

We see that φ(0) and φ(z0 + τ) have the same sign if and only if c(τ/2) ≥ 0. In this case, φ
doesn’t vanish on [0, z0 + τ [ by Lemma 3.1, and z1 ≥ z0 + τ . This ends the proof. ��

Lemma 3 in [3] gives a result on the zeros of the solutions of the differential Eq.

u
′′
(x) + p(x)u(x) = 0, (14)

under certain restrictive assumptions on the function p(x). Under these assumptions, the even
solution of the equation realizes the minimum distance between such zeros. We shall adapt
the lemma to the case where the coefficient is a periodic function; the same proof works in
this case.

Lemma 3.6 Let p(x) have the following properties:

(a) p is continuous;
(b) p(−x) = p(x);
(c) the even solution of the differential Eq. (14) vanishes for α > 0 and does not vanish for

−α < x < α;
(d) p(x) is non-increasing for 0 < x < α;
(e) p is periodic, with period 2α.

Let α1, α2 be any pair of consecutive zeros of any non-trivial solution of (14). Then

α2 − α1 ≥ 2α.

Note: in [3], the condition (d) reads "p(x) is non-increasing for 0 < x < +∞". When
p(x) is assumed to be periodic of period 2α, it is enough to suppose this property on ]0, α[.

4 Conjugate points of Lorentzian tori with a Killing vector field

4.1 Conjugate points from the Killing vector field

Given a Lorentzian torus with Killing field K , modeled on Eu
f , we have the following result

from [2]:

Theorem 4.1 (Theorem 5.29 [2]). Let f ∈ C∞(R,R) be a non-constant periodic function,
and let T be a torus modeled on Eu

f . If T has no conjugate points, then:

(1) the set of connected components of { f �= 0} is locally finite,
(2) f changes sign between bands with a common boundary,
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(3) f ′ changes sign once in a band,
(4) each component defines a type II band in the torus.

A critical orbit of K is an orbit corresponding to a critical point of 〈K , K 〉. These leaves
are geodesics (they are exactly the set of leaves of K on which ∇K K = 0).

Lemma 4.2 On a torus such that condition (3) of Theorem 4.1 is satisfied, the critical orbits
of K are without conjugate points.

Proof The curvature is given by κ = f
′′
(x)/2 in the x-coordinate. From hypothesis (3), it

follows that a local maximum of f is necessarily positive and a local minimum is negative.
This yields the following:

Fact 4.3 The timelike critical orbit of K corresponding to a local minimum of f lies in a
region of non-negative curvature, and the spacelike critical orbit (corresponding to a local
maximum of f ) lies in a region of non-positive curvature. On the other critical orbits of K ,
we have κ = 0.

It is then straightforward that Eq. (12) does not have a solution vanishing twice on such
geodesics. ��

As pointed out in the introduction of this paper, we restrict our attention to non-null
geodesics. The geodesics perpendicular to K are already known to be without conjugate
points in the torus (see [1, Proposition 1.8]); this also holds for the geodesics such that β

does not vanish, by Lemma 3.1. We are left with the case in which γ is not perpendicular
to K and β vanishes without being identically zero. We begin by investigating the conjugate
points produced by β.

The geodesics are always thought of as being in the extension Eu
f .

Lemma 4.4 Let γ be a non-null geodesic not perpendicular to Ku.
Assume γ is not a critical geodesic of K u. If f satisfies conditions (2)-(3) of Theorem 4.1
above, we have:

(i) β does not vanish more than one time in a band.
(ii) β vanishes if and only if γ crosses a type III band in Eu

f .
(iii) a geodesic γ tangent to Ku in the torus leaves the square in which β vanishes and

crosses the type I neighboring band in Eu
f . So if the torus contains only type II bands,

the geodesic lies in ˜T exactly in a domino.

Proof (i) Let p be a point where γ is tangent to Ku in the torus, and denote by B the
band containing p. Define U := {z ∈ B, z is an extremum of 〈Ku, Ku〉}; condition
(3) on f implies that this set is connected, hence splits the band into two connected
components. In the interior of the band, K has type ε, so the function ε〈K , K 〉 is
positive on B. Suppose β vanishes another time in B. It appears from the formula
ε〈Ku, Ku〉 = C2−β2 that p is a localmaximumof ε〈Ku, Ku〉 on γ , so if q is the closest
point to p inwhichβ vanishes, p andq are necessarily in the sameconnected component,
and in addition, ε〈Ku, Ku〉 is decreasing from p to q . Now since 〈Ku, Ku〉(p) =
〈Ku, Ku〉(q) = εC2, this means that ε〈Ku, Ku〉 is constant between the two points,
thus γ is a critical orbit of Ku , contrary to our assumption.

(ii) Let p be a point where γ is tangent to Ku , and denote by B the square containing p. If
γ remains in B, it asymptotically approaches an orbit of Ku contained in B on which
the norm of Ku is the same as on the point where γ is tangent to Ku (see Lemma
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2.16); the same argument above shows that this is impossible. It follows that γ leaves
the square by crossing a null leaf of Ku on the boundary of B. Now, denote by l0 the
leaf of the foliation orthogonal to Ku containing p. The generic reflection that fixes l0
is an isometry of the band that preserves γ|B . By Remark 2.5, γ crosses a type III band
containing the interior of B. The converse is given by Lemma 2.19 (ii).

(iii) By (ii), γ leaves the square in Eu
f in which β vanishes by crossing a type III band.

Now, since f changes sign between two consecutive bands, γ cannot cross the type III
neighboring band. Repeated application of Lemma 2.16 shows that γ cannot remain in
that band either. In addition, γ cannot cross a type II band unless it is perpendicular to
Ku . So γ crosses the type I neighboring band. Now, since f changes sign between two
consecutive bands, γ cannot cross the type III neighboring band. Repeated application
of Lemma 2.16 shows that γ cannot remain in that band either. In addition, γ cannot
cross a type II band unless it is perpendicular to Ku . So γ crosses the type I neighboring
band.

��

Corollary 4.5 If (T , K ) is a torus satisfying the hypotheses in Theorem 4.1, then the Killing
vector field doesn’t produce conjugate points in the torus, meaning that the Jacobi field
defined by its orthogonal component does not vanish twice in the torus.

Proof Let γ be a non-null geodesic not perpendicular to K , lifted and then extended to Eu
f ,

such that β vanishes at least twice. We claim that γ crosses a type I band between any two
consecutive zeros of β. Indeed, by Lemma 4.4 (i), if β vanishes in some band of the torus,
then β has only one zero in that band. Besides, γ leaves the band and crosses the type I
neighboring band (Lemma 4.4 (iii)), and it follows from the point (ii) of the lemma that β

does not vanish while γ crosses the type I band. This proves the claim. In consequence, when
the torus is assumed to have only type II bands, these zeros are never both in the torus. ��

4.2 Invariant geodesics and conjugate points

We begin by stating a lemma that will be used at the end of this section. Choose an orientation
on the torus, and let p ∈ T be a point such that 〈K (p), K (p)〉 = 0. If the orbit of K containing
p belongs to the first line of the null cone bordering the negative cone, fix a null vector field
L in the maximal ribbon of ˜T containing p such that 〈L, K 〉 = −1; otherwise, take L such
that 〈L, K 〉 = 1. This way, we get a local coordinate x in the ribbon containing p, which we
globalize to Eu

f in a unique way.

Lemma 4.6 Let γ be a geodesic in Eu
f , then

εβ
′
(t) = 1

2
f

′
(x(γ (t)).

Proof We can assume that the orbit of K containing p belongs to the first line of the null
cone bordering the negative cone. In the ribbon containing p, call it U , set K = CT + βN
and L = λ1T + λ2N ; λ1 and λ2 are never vanishing functions on γ . In fact, the choice of
L leads to λ1 = −ελ2. We have ∇T K = β

′
N and ∇N K = β

′
T . An easy computation then

gives ∇L K = εβ
′
L , yielding

1

2
∇L 〈K , K 〉 = εβ

′
.
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Now in the ribbon obtained from U by a generic reflection, the local coordinate is defined
by the null vector field L

′
such that 〈L ′

, K 〉 = 1, and L
′
belongs to the other null line field.

We can check that this gives the same formula, finishing the proof. ��
Corollary 4.7 Let (T , K ) be a torus modeled on Eu

f , with f a non-constant periodic function

such that f
′
changes sign once in a band. Then a non-null geodesic γ that lies in a band

provided |t | is large enough, asymptotically approaches a critical orbit of K u, and this orbit
is either timelike or spacelike, depending on the type of γ .

Proof Provided |t | is large enough, γ is transverse to K (see Lemma4.4, (i)), so an application
of Lemma 2.16 shows that γ asymptotically approaches a leaf of Ku whose type is the same
as γ ’s, i.e. x

′
goes to 0 on γ , hence

lim
t→∞ β(t) = 0, (15)

since x
′
(t)2 = β(t)2. On the other hand, εβ

′
(t) converges by Lemma 4.6 above; combining

this with (15), we see that this limit is necessarily zero. ��
Let γ be a non-null geodesic such that β vanishes without being identically zero, para-

matrized so that β(0) = 0.

Lemma 4.8 Assume β vanishes twice and let ω be the half-distance between two consecutive
zeros (measured in the parameter t of the geodesic). Then β is odd and periodic, of period 4ω
(in particular, the distance between two consecutive zeros of β is always 2ω). Furthermore,
κ is a 4ω-periodic and even function.

Proof The proof is based on a powerful geometric ingredient of Lorentzian tori with a Killing
vector field: the generic reflection that fixes a non-degenerate leaf of K⊥, defined on the
saturation of the leaf by the flow of K , extends to a global isometry of the extension (see
Proposition 2.10). A point where β vanishes is either a saddle point or corresponds to a
point where γ is tangent to K , depending on whether the geodesic is orthogonal to K or not.
The behavior being slightly different in each case, we choose to consider them separately.
Suppose γ is not a leaf of K⊥; the reflection that fixes the geodesic perpendicular to K that
passes through γ (0) is an isometry that preserves γ (actually, it reverses the orientation),
sending K to −K ; it sends γ (t) to γ (−t) yielding for all t , β(−t) = −β(t). Composing
two reflections that correspond to two consecutive zeros of β gives an isometry preserving
γ , which is actually a translation of the parameter t by 4ω. It sends γ (t) to γ (t + 4ω), and
gives for all t ,

β(t + 4ω) = β(t),

as expected. Now suppose that γ is perpendicular to K ; β vanishes at the saddle points. Let
p be a saddle point on γ . According to [2], we might choose two generic reflections each
one fixing a leaf of K⊥ passing through p, such that their composition is the reflection with
respect to p. It is not hard to see that the obtained reflection is an isometry preserving γ ; it
again reverses its orientation and sends K to −K . Composing two such reflections as before
(corresponding to two saddle points), the same conclusions follow.
The same arguments provide the proof of the statement on κ . ��
Definition 4.9 A geodesic of Eu

f with β a non-zero periodic function is called "β-periodic"
or an "invariant geodesic", for they are invariant by an isometry of the extension.
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The term "β-periodic" will be adopted below because it seems to bemore suggestive of the
type of resulting Jacobi equation.We simply say "periodic geodesic" instead of "β-periodic".

If we suppose that f has simple zeros, the geodesics perpendicular to K are all periodic.

Corollary 4.10 Let γ be a non-null geodesic tangent to K in the torus; we distinguish two
different behaviors of γ in Eu

f : either γ is periodic, or it asymptotically approaches a critical
orbit of K with infinite t; in this case, the geodesic is tangent to K only one time.

Proof If γ cuts a null orbit of Ku denoted by l, we claim that γ crosses a type I band
B containing l if and only if C2 > supB ε〈Ku, Ku〉. Indeed, if γ crosses a type I band,
it is everywhere transverse to Ku in that band, for if β vanishes, either γ remains in the
band or it crosses a type III band containing l. Writing C2 − β2 = ε〈Ku, Ku〉, we see
that C2 > supB ε〈Ku, Ku〉. Now, assume this inequality holds, then the same argument as
in the proof of Lemma 4.4, (iii), shows that γ crosses the type I band B. In fact, as long
as this inequality holds, γ remains in the ribbon containing l, by cutting the leaves of Ku

transversally.
Now, if γ enters a band where C2 is reached by ε〈Ku, Ku〉 in that band, using Corollary 4.7
and the previous lemma, we distinguish two different cases:

a) C2 is not a critical value of f ; in this case, γ meets tangentially the closest orbit of Ku

to the boundary of the band meeting γ , on which C2 = ε〈Ku, Ku〉, so that β vanishes
a second time. The geodesic is thus periodic.

b) C2 is a critical value of f , which amounts to saying that the corresponding orbit of Ku

is a geodesic. In this case, if the closest orbit of Ku to the boundary meeting γ is not
a geodesic, then γ behaves as in a); otherwise, it approaches the orbit asymptotically,
with an infinite t .

��
Remark 4.11 This corollary holds for every torusmodeled on Eu

f such that f is a non-constant
periodic function. When assumptions (2)-(3) in Theorem 4.1 hold, the periodic geodesics
leave every maximal ribbon in Eu

f , by crossing a type I band between two zeros of β.

Definition 4.12 Define L∗
K (T ) as the subset of LK (T ) such that the function f induced by

the norm of K has simple zeros and satisfies conditions (3)–(4) of Theorem 4.1. In particular,
the assumption " f has simple zeros" implies conditions (1)–(2) of Theorem 4.1.

Given a torus inL∗
K (T ), using the results in Sect. 3, we shall give a necessary and sufficient

condition for geodesics (other than the critical orbits of K ) tangent to K in the torus to be
without conjugate points in it.
Recall that when assumptions (2)–(3) in Theorem 4.1 hold, if γ is a geodesic tangent to K at
p ∈ T , and not a critical orbit of K , then p is the unique point of T where γ is tangent to K .

Proposition 4.13 (Characterization of geodesics without conjugate points) Let (T , K ) be a
torus modeled on Eu

f , with f satisfying the properties in Theorem 4.1. Let γ be a geodesic
tangent to K in the torus; assume γ is not a critical orbit of K and set t = 0 at this point.
Then γ is without conjugate points in the torus if and only if c(t0) + c(t1) ≥ 0, where t0, t1
are the smallest positive consecutive reals such that the norm of K vanishes on γ .

Proof The two reals t0 and t1 do exist by Lemma 4.4. The geodesic lies in the torus in a
domino, either for t ∈ [−t1, t0] or for t ∈ [−t0, t1], t0 and t1 being as in the statement above.
Assume γ is periodic; if c(t0) + c(t1) ≥ 0, the intervals [−t1, t0] and [−t0, t1] satisfy the
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property (P) for α = |C |, by Lemma 3.2. All we have to show is that this implies that γ

is without conjugate points in the torus. Setting α = |C |, Sα is the set of points in which
the norm of K vanishes. Assume (P) is satisfied on [−t1, t0], i.e. two zeros of any solution
of (12) in [−t1, t0] (or in [−t0, t1]) are separated by two zeros of 〈K , K 〉. Since γ lies in
T 2 in a domino, it contains only one zero of 〈K , K 〉 in the torus. Therefore, two zeros of a
solution of (12) cannot be both in the torus. Now, suppose that c(t0) + c(t1) < 0; one can
find by Lemma 3.2 a Jacobi field along γ vanishing at z0 and z1 in [−2ω, 2ω], such that
−t0 < z0 < 0 and 0 < z1 < t1.
The case in which γ asymptotically approaches a critical orbit of K works in much the same
way by proving, following Lemma 3.2, that the property (P) is again equivalent to having
c(t0) + c(t1) ≥ 0. The detailed verification is left to the reader. ��
Theorem 4.14 Let (T , K ) be a torus in L∗

K (T ) modeled on Eu
f . Denote by (xn)n∈Z the

sequence of zeros of f , the xn’s being taken in increasing order. If the torus has no conjugate
points, then

f
′
(xn) + f

′
(xn+1) = 0, ∀n ∈ Z.

Proof Denote again by (0), .., (n) the distinct bands of the torus, (i) and (i + 1) having a
common boundary and opposite signs. Denote by xi < xi+1 the zeros of f in the band (i).
Let γ be a geodesic tangent to K in a band (i) of the torus. Set t = 0 at this point. For |C |
small enough, the geodesic crosses one type I band before β vanishes again in a copy of
the band (i + 2) of the ribbon containing (i). The torus contains an isometric image of the
geodesic γ restricted to a domino containing the zero of β in (i), and an isometric image
of the geodesic restricted to a domino containing the zero of β in (i + 2). By Corollary 3.4
and Lemma 4.13, these geodesics are without conjugate points in the torus if and only if
c(t0) + c(t1) ≥ 0 and −c(t0) − c(t1) + 2 c′(2ω)

s′(2ω)
s(t0) ≥ 0. Consider a sequence of geodesics

γn approaching a non-degenerate geodesic γ∞ perpendicular to K . Then, |C | tends to 0,
tn0 → 0, and tn1 → 2ω∞, where ω∞ is associated to γ∞. We admit that c(t0)+ c(t1) depends
continuously on γ (this will be proved in Sect. 5). Letting |C | go to 0, we have

cn(t
n
0 ) + cn(t

n
1 ) → c∞(0) + c∞(2ω∞)

and − cn(t
n
0 ) − c(tn1 ) + 2

c
′
n(2ωn)

s ′
n(2ωn)

sn(t
n
0 ) → −c∞(0) − c∞(2ω∞),

where the solution c∞ associated to γ∞ is then evaluated at two consecutive saddle points
of γ∞. Denote them by pi and pi+1. On the other hand,

c∞(0) + c∞(2ω) = 1

s′∞(0)
+ 1

s′∞(2ω)
= β

′
∞(pi ) + β

′
∞(pi+1)

β
′
∞(pi+1)

.

We see that if the torus is without conjugate points, c∞(0) + c∞(2ω), and then β
′
∞(pi ) +

β
′
∞(pi+1) should be zero. Using Lemma 4.6, this yields f

′
(xi ) + f

′
(xi+1) = 0, for all i . ��

Remark 4.15 The geodesic parametrization of a null orbit of K is incomplete if and only if
it corresponds to a simple zero of f .

Remark 4.16 When the geodesic is incomplete, it is easy to see that a geodesic parametrization

is given by e− 1
2 η f

′
t , where K = ∂t , and η = ±1 depends on the null orbit of K and the

choice of the x-coordinate (once the coordinate is fixed, two consecutive null orbits of K in
the torus give (η1, η2), such that η1 + η2 = 0); therefore, Theorem 4.14 above can be stated
in a more geometric way, as in Theorem 1.3 in the introduction of this paper.
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Corollary 4.17 TCP can be obtained as a limit of Lorentzian tori with conjugate points, and
admitting a Killing field.

Proof This is because the necessary condition for the absence of conjugate points, obtained in
Theorem 4.14 above is a closed condition. So if we perturbate the function f corresponding
to the Clifton–Pohl torus, we get metrics on the torus with a Killing field, arbitrarily close to
TCP and containing conjugate points. ��
Remark 4.18 In [1] it is shown that the space of Lorentzian tori without conjugate points is
a closed subset of L(T ) endowed with the C∞ topology, and that the Clifton-Pohl torus is
on the boundary of this set. In the proof, the construction of the sequence of such metrics
converging to TCP killed the Killing vector field.

4.3 A class of Lorentzian tori without conjugate points

The local geometry of a Lorentzian torus with a Killing vector field is determined by the
function f induced by the norm of ˜K in the x-coordinate of the universal cover. In privileging
this point of view, we obtain a family of Lorentzian tori without conjugate points admitting a
Killing vector field with pairwise non-isometric universal cover; these examples include the
Clifton–Pohl torus and quadratic variations of it.
In our examples, we assume that f has two zeros in its smallest period, and that ∃a ∈
R, f (a + t) = f (a − t) (in particular, n = 2; see Definition 2.7 for the definition of n).
We then get additional isometries in Eu

f , known as non-generic reflections in [2], that lead
to additional symmetries on the β solution. In this case, given a non-null geodesic γ , not
perpendicular to K , the behavior in b), Corollary 4.10, does not appear, and β vanishes
(without being identically zero) if and only if the geodesic is periodic. With that assumption
on f , κ has two symmetries, one of which about t = 0 and the other about t = ω, hence κ

is 2ω periodic, and β satisfies the following:

β(2ω − t) = β(t) ∀ t ∈ R.

So let γ be a periodic geodesic, and set t = 0 at the point in the torus where γ is tangent to K .
Write β(t) = β ′(0)s(t) where s is as in Sect. 3. Lemma 3.5 together with Proposition 4.13
imply that the absence of conjugate points in the torus for such geodesics is equivalent to the
fact that β realizes the minimum distance between the zeros of the solutions of the Jacobi
equation. A large class of Lorentzian tori with no conjugate points is given in the following
theorem:

Theorem 4.19 Let f be a periodic function that satisfies the following properties:

i) f has simple zeros,
ii) f

′
changes sign one time in a band,

iii) f
′
. f

′′′ ≤ 0,
iv) ∃a ∈ R, f (a + t) = f (a − t),
v) f has two zeros in the smallest period of f .

Then, a torus modeled on Eu
f and all of whose bands are of type II has no conjugate points.

Proof Let γ be a non-null geodesic, and assume that β vanishes. Either β is identically zero,
in which case the geodesic is a critical orbit of K without conjugate points (Lemma 4.2), or
it isn’t identically zero, then γ is periodic. The geodesic therefore has no conjugate points in
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the torus if and only if β realizes the minimum distance between the zeros of the non-trivial
solutions of the Jacobi equation. Put p(t) = εκ(t + ω) and consider the differential Eq.

u
′′
(t) + εκ(t + ω)u(t) = 0 (16)

We have the following:

i) p is even; this is a consequence of κ being even and 2ω periodic. Indeed, write p(−t) =
εκ(−t + ω) = εκ(t − ω) = εκ(t + ω) = p(t);

ii) the even solution is given by β(t + ω);
iii) p(t) is decreasing for 0 < t < ω.

To see this, denote x1 < x2 two consecutive critical points of f which correspond to extremal
values. Condition (ii) implies that f

′
does not change sign on ]x1, x2[. Since the curvature

is given by f
′′
(x)/2 in the x coordinate, the condition f

′
. f

′′′ ≤ 0 implies that on a ribbon,
κ is either decreasing or increasing between the two orbits of K corresponding to x1 and
x2, depending on whether f reaches its minimal value on x1 or x2. Now the geodesic is
transverse to K over ]0, 2ω[ and lies in a ribbon of the Lorentzian surface Eu

f . Since n = 2,
the geodesic crosses only one extremal orbit of K between 0 and 2ω, the one corresponding
to t = ω.We then get that κ(t) is decreasing (resp. increasing) forω < t < 2ω if the geodesic
is spacelike (resp. timelike), implying condition (iii).
Given Lemma 3.6, the even solution β(t + ω) then realizes the minimum distance between
the zeros of the non-trivial solutions of Eq. (16). Therefore, when the torus has only type
II bands, these geodesics have no conjugate points in the torus. This completes the proof of
Theorem 4.19. ��

4.4 Some examples of Lorentzian tori without conjugate points

Definition 4.20 We call a quadratic variation of the Clifton–Pohl torus a metric of the form

g = 2dxdy

Q(x, y)
,

where Q is a positive definite quadratic form of determinant 1.

Proposition 4.21 The quadratic variations of the Clifton–Pohl torus are contained in the
family obtained in Theorem 4.19.

Proof Considering −g instead of g if necessary, we can assume that the quadratic forms are
given by

Q(x, y) = ux2 + 2vxy + wy2, with u > 0, w > 0, uw − v2 = 1.

Write Q(x, y) = (
√
ux+ v√

u
y)2+( 1√

u
y)2.Applying the change of variables x

′ = √
ux, y′ =

1√
u
y, we reduce to the metrics of the form

g = 2dxdy

x2 + (y + ax)2
,

where a ∈ R. These metrics admit a Killing vector field given by K = x∂x + y∂y .
We have now

κ = −2K .K − 2a.
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Hence, f is a solution of the differential Eq.

f
′′
(x) + 4 f (x) − 4a = 0,

and it is given by f (x) = sin(2x) − 2a cos2(x).
The Clifton–Pohl torus and its quadratic variations are then contained in the family obtained
before, and are therefore without conjugate points. ��

Other examples of Lorentzian tori without conjugate points, belonging to this family, are
given at the end of this paper.

5 Deformation of a Lorentzian torus without conjugate points

Recall that a torus in LK (T )without conjugate points satisfies conditions (1)-(4) in Theorem
4.1. So we defined L∗

K (T ) to be the subset of Lorentzian tori in LK (T ) containing only type
II bands (condition (4)), and modeled on Eu

f such that f has simple zeros and satisfies the
third condition of the theorem (the condition on the zeros implies (1)-(2)). A torus without
conjugate points inL∗

K (T ) satisfies in addition the property in Theorem 4.14, which is a kind
of "pointwise symmetry" on f ; in the sequel we denote by SL∗

K (T ) the set of Lorentzian
metrics in L∗

K (T ) satisfying this condition.
The family introduced in Theorem 4.19 gives examples of metrics in L∗

K (T ) without conju-
gate points; we wish to know if this property is stable by deformation in SL∗

K (T ). Our main
concern in this section will be to obtain stability criteria for these metrics, i.e. conditions on
f from which conclusions may be drawn as to the stability character of the property.
This section contains 5 Subsections. In Sect. 5.1, we prove that for metrics in LK (T ),

the Killing field depends smoothly on the metric. This allows us to define in Sect. 5.2 a
continuous function depending on the metric, that controls the conjugate points. Recall that
the universal cover of a Lorentzian torus admitting a Killing field appears as an open subset of
a bigger surface which contains conjugate points. For the stability question, a special interest
will be given in Sesct. 5.3 and 5.4 to the case in which conjugate points are on the boundary.
We will give sufficient conditions on the metric to avoid this situation, and obtain in the last
section a stability result.

5.1 On the Killing vector field of a Lorentzianmetric on T

The space of smooth Lorentzian metrics on a torus is equipped with the Cr topology; since
the torus is compact, this space is metrisable. If K is a Killing field for a metric g, then λK ,
λ ∈ R∗, is also a Killing vector field for g. Actually, if a (non-flat) metric on a torus admits a
Killing field, then the latter is unique up to a multiplicative constant; this was proved in [2].
To fix one, one fixes an orientation on the torus (by fixing a volume form ν on it) and a vector
field J everywhere transverse to K , together with a point p on T in which g(K , K )(p) �= 0,
and takes λ0K such that g(λ0K , λ0K )(p) = η, η = ±1, and ν(K , J ) > 0 (the latter is
possible, for the foliation of K is orientable). We simply denote it by K . This determines K
on the orbit of K containing p, and on a null geodesic passing through this point (Clairaut’s
constant). This way, one determines K on the saturation of the geodesic by the flow of K ,
i.e. on a ribbon; doing it on the ribbons in turn, K is determined on the whole torus. In the
following, K is fixed this way.

Now consider a sequence of Lorentzianmetrics gn ∈ LK (T )which converges to a non-flat
metric g ∈ LK (T ) in the Cr topology, r ≥ 4; denote by K the Killing vector field of g, Kn
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that of gn for all n. A natural question is to see whether Kn converges to K . For convenience,
we start by examining the foliations associated to these vector fields. We want to provide the
space of foliations of the torus, denoted by F(T ), with a "natural" topology. The projective
bundle over a torus being a trivial bundle, we choose a trivialization and we associate to a
foliation its tangent field, which is then a smooth map from T into P1. One identifies F(T )

with its image in Cr (T , P1) equipped with the Cr topology, and gets a topology on F(T );
this topology is independent of the choice of the trivialization.

Proposition 5.1 If gn is a sequence of Lorentzian metrics in LK (T ) converging to a non-flat
metric g ∈ LK (T ) for the Cr topology, r ≥ 4, then the sequence of foliations associated
to Kn converges to that of K , for the Cr−3 topology. Then, if p is a point on T where
g(K , K )(p) = η, η = ±1, then for n sufficiently large, Kn(p) has type η; fix Kn by setting
gn(Kn, Kn)(p) = η, such that Kn(p) converges to K (p). The sequence Kn so obtained
converges to K for the Cr−4 topology.

In the following, g ∈ LK (T ) is a non-flat metric; we denote by U the open set in which
κ , the sectional curvature associated to g, is a submersion. On this set, κ defines the foliation
associated to K . The open set of T not containing the null orbits of K will be denoted by V .

Fact 5.2 Consider a sequence of metrics gn ∈ LK (T ) converging to g for the Cr topology;
then the sequence of foliations associated to Kn converges to that of K for the Cr−3 topology,
on every compact subset of U.

Proof Observe that the space of submersions over a compact variety M is an open set in the
space of C1 functions over M . Let B be a compact subset of U ; provided we take n large
enough, κn is also a submersion on B that defines the foliation associated to Kn .
In smooth local coordinates (s, t), define

Xκ (s, t) :=
(

− ∂κ

∂t
,
∂κ

∂s

)

,

a vector field associated to κ . We have dκ(Xκ ) = 0. Moreover, since K acts isometrically on
the torus, the curvature is constant along the leaves of K , so we also have dκ(K ) = 0. Now,
since g is not flat, it follows that K and Xκ are colinear, so that Xκ defines the foliation of K .
It follows that if κn converges to κ for the Ck−2 topology, the foliations they define converge
for the Ck−3 topology. Note that the curvature defines the foliation but not the Killing field;
indeed, if X is such that dκ(X) = 0, then dκ(φX) = 0 for any function φ on the torus. ��
Fact 5.3 Denote by F (resp. Fn) the foliation associated to K (resp. Kn). Suppose there
exists q ∈ V such that Kn(q) converges to K (q). Fix K and Kn, for n big enough, by setting
g(K , K )(q) = gn(Kn, Kn)(q) = η, η = ±1. IfFn converges toF on V for the Ck topology,
with k ≤ r , then Kn converges to K on every compact subset of the connected component of
q contained in V . The convergence holds for the Ck topology.

Proof Fix a Riemannian metric S on T , and let X (resp. Xn) be a vector field on T tangent
to F (resp. Fn), such that X(q) (resp. Xn(q) is R+-collinear to K (q) (resp. Kn(q), and
S(X , X) = 1 (resp. S(Xn, Xn) = 1. Since the foliations are orientable, the oriented foliations
still converge, so that Xn converges to X for theCk topology. Next, we define K̄ (resp. K̄n) to
be the vector field on the connected component of V containing q , R+-collinear to X (resp.

Xn) such that g(K̄ , K̄ ) = ε = gn(K̄n, K̄n), for n big enough. We have K̄n
Ck→ K̄ . Write

K = hK̄ and Kn = hn K̄n, where h,hn > 0, for all n. This yields h = √
εg(K , K ), which

implies that h (resp. hn) is invariant by the flow of K (resp. Kn).
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Now, write

g(∇X K , X) = 0, ∀X .

This yields the following Eq. on h

(∇Xh)g(K̄ , X) + h g(∇X K̄ , X) = 0, ∀X . (17)

Let c(s) be a curve containing q and transverse to K , and define a Cr -diffeomorphism φ by
setting φ(s, t) = F(t, c(s)), where F is the flow of K̄ . There exists an open neighborhood
of R2 on which the flows of K̄n are all defined, for n big enough. So define in the same way
a diffeomorphism φn by φn(s, t) = Fn(t, c(s)), where Fn is the flow of K̄n .
Since K̄n isCk close to K̄ , for n large enough, φn isCk close to φ. Set X = ∂φ

∂s and Xn = ∂φn
∂s

in Eq. (17) above; combining this with the fact that h is invariant by K̄ , h o φ, written in the
(s, t) coordinates, satisfies the following differential Eqs.:

∂(h ◦ φ)

∂t
= 0,

∂(h ◦ φ)

∂s
g(K̄ , X) o φ + (h ◦ φ)g(∇X K̄ , X) ◦ φ = 0.

This yields h ◦φ(s, t) = h ◦φ(s, 0) and hn ◦φn(s, t) = hn ◦φn(s, 0), for all t . The continuity
of solutions in the initial conditions and the coefficients of the equation permits now to assert
that hn ◦ φn(s, 0) is Ck−1 close to h ◦ φ(s, 0), hence hn ◦ φn is Ck−1 close to h ◦ φ, for n big

enough. Since φn
Ck→ φ, one easily shows that actually hn converges to h on a neighborhood

of q , for the Ck−1 topology, and then on any compact subset of the connected component of
V containing q . Now, look at Eq. (17), theCk−1 convergence of hn and theCk convergence of
K̄n imply theCk−1 convergence of the first order derivatives of hn , hence theCk convergence
of hn . ��
Fact 5.4 Let gn be a sequence of metrics in LK (T ) converging to g for the Cr topology; K
(resp. Kn) the Killing field of g (resp. gn) fixed as in the previous fact. Denote by R a maximal
ribbon in ˜T , and let L be the null vector field on it defined by g(L, K ) = 1; define Ln (for n
big enough) to be the null vector field on R such that gn(Kn, Ln) = 1. The Ck convergence
of Kn to K on R, with k ≤ r , leads to the Ck convergence of Ln to L.

Proof Let L̄ (resp. L̄n) be the null vector field on R, R+-collinear to L (resp. Ln), such
that S(L̄n, L̄n) = S(L̄, L̄) = 1, where S is a Riemannian metric on T . By definition, the

sequence of (oriented) foliations associated to Ln converges to that of L , so that L̄n
Cr→ L̄ .

Write L = s L̄ and Ln = sn L̄n , s and sn being non-vanishing functions. This yields

g(L̄, K ) = 1

s
and gn(L̄n, Kn) = 1

sn
.

It follows that if K is Ck close to K , then sn is Ck close to s, which finishes the proof. ��
Fact 5.5 Let gn be a sequence of metrics in LK (T ) converging to g for the Cr topology; take
q ∈ V ∩ U and fix K and Kn as in Fact 5.3. Denote by R a maximal ribbon for the metric
g, containing q, and define L and Ln on R as in the previous fact, then Ln is Cr−3 close to
L on any compact subset of R.

Proof Combining Fact 5.2 and Fact 5.3, we can say that Ln converges to L for the Cr−3

topology on any compact subset of the connected component of q in V ∩U . Denote by B a
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set saturated by K , where this convergence holds. Now, in a local chart, the geodesics of g
are the integral curves of the vector field of T T (T ) defined by

Z = (Z1, Z2) =
⎛

⎝yk,−
∑

i, j

�k
i, j (x)y

i y j

⎞

⎠ .

The components of Z involve the first derivatives of g, so if gn converges to g for the Cr

topology, then Zn converges to Z for the Cr−1 topology. Therefore, there exists an open
neighborhood U of the zero section of R × T (T ) on which the flows �n of Zn are all
defined, for all n but a finite number. Furthermore, the sequence �n converges to � on
any compact subset of U (for the Cr−1 topology). Let p ∈ R; for an appropriate t0 >

0, �t0 is a diffeomorphism from an open set TV of T (T ), where V is an open set in B,
into an open set TW , where W is a neighborhood of p. The sequence of diffeomorphisms
�n(t0, .) converges to �(t0, .); combining this with the fact that Ln tends to L on V , we
get �n(t0, Ln)

Cr−3−→ �(t0, L). Now write �n(t0, Ln) = Ln ◦ �n and �(t0, L) = L ◦ �. It

follows that Ln ◦ �n
Cr−3−→ L ◦ �, hence Ln

Cr−3−→ L in the neighborhood of p. ��
We go back to the proof of Proposition 5.1.

Proof We start with the following observation.
Observation: Suppose g has non-constant curvature κ , and consider p ∈ T such that α :=
κ(p) is a regular value of κ and g(K , K )(p) �= 0; set g(K , K )(p) = η, η = ±1, taking λ0K
if necessary. The set κ−1(α) of isolated orbits of K contains the orbit of K containing p.
Now let {ψ t } be a flow of K . Since the stages ψ t of the flow are isometries, the exponential
map commutes with the flow; we write

expψ t (p)oψ t∗ = ψ t ◦ expp, (18)

This geometric ingredient allows, once an orbit of K is given, to get all the orbits of K . Indeed,
fix q ∈ T ; p and q can be joined by a curve made of (broken) null geodesics, cutting each
orbit of K transversally; call this curve c. Denote by γ (t) the integral curve of K containing
p; put γ (0) = p, and g(γ̇ (p), γ̇ (p)) = 1. Let L denote the null vector field along γ , tangent
to the null foliation containing c, and such that 〈L, K 〉 = 1. Now (18) gives:

ψ t (q) = expγ (t)(sLγ (t)),

where expp(sL(p)) = q , defining the integral curve of K containing q .

According to Fact 5.2 and Fact 5.3, Kn
Cr−3−→ K on every compact subset of the connected

component of p inV∩U . Denote by B an open set containing pwhere this convergence holds.
Furthermore, in every ribbon containing p, the sequence Ln of null vector fields defined in a
ribbon by gn(Ln, Kn) = 1, for n large enough, converges to the null vector field L defined
in that ribbon by g(L, K ) = 1.
Now, we denote by Exp (resp. Expn) the exponential map of g (resp. gn). Let q be a point
in a ribbon containing p, and let t0 > 0 such that q

′ = Exp(t0L(q)) ∈ B. There exists a
neighborhoodW of the zero-section of a subset of T (T ), such thatW = {tv, t ∈ [0, t0], v ∈
U}, where U is a neighborhood of L(q) in T (T ), in which the exponential maps of the metrics
gn are defined for all n but a finite number. Furthermore, Expn converges Ck−1 to Exp on
every compact subset ofW . Now, according to the previous observation, if z ∈ π(U), where
π : T (T ) → T is the natural projection, the integral curve of K (resp. Kn) containing z is
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given by ψ t (resp. ψ t
n), such that:

ψ t (z) = Expψ t (φ(z))(−t0L(ψ t ◦ φ(z)))), where φ(z) = Expz(t0L(z)) ∈ B.

Since Ln converges Cr−3 to L , and the flows of Kn converge Cr−3 to the flow of K in B,
then ψ t

n converges Cr−3 to ψ t , leading to the Cr−4 convergence of Kn to K on π(U). The
result on the torus follows from the fact that any point on it can be brought to a point in B by
a broken null geodesic everywhere transverse to K . ��
Corollary 5.6 Let (T , K ) be a torus in L∗

K (T ); the number of bands, their signs and types
are preserved in a neighborhood of the torus in LK (T ).

Proof For the number of bands and their signs, this is an easy consequence of the previous
proposition. For the type preservation, recall that the null-leaves of K on a band of type
II belong to different null-foliations, while on a band of type I, they belong to the same
null-foliation. Since we cannot have a type III band in the torus, the result follows. ��
Corollary 5.7 Let g ∈ LK (T ) a non-flat metric with Killing field K , and let gn ∈ LK (T ) be
a sequence of metrics, with Killing field Kn, converging to g for the Cr topology, r ≥ 4. Let
R be a maximal ribbon in ˜T for the metric g, and fix p ∈ R. Define φ : R → I ×R, φ(q) =
(x(q), y(q)), with φ(p) = (0, 0); define in the same way φn on R satisfying φn(p) = (0, 0).
Then, φn converges Cr−4 to φ on every compact subset of R.

Proof Proposition 5.1 implies the Cr−4 convergence of the Killing fields, hence that of the
transverse coordinates, using Lemma 2.11. Now, define a volume form ν on R by setting
ν(K , L) = 1, where L is the null vector field on R satisfying g(L, K ) = 1. The coordinate
y ∈ C∞(R,R) can be defined by i

˜Lν = dy and y(p) = 0. In the same way, consider for n
sufficiently large a volume form νn on R defined by νn(Kn, Ln) = 1, where Ln is the null
vector field on R satisfying gn(Ln, Kn) = 1. The coordinate yn ∈ C∞(R,R) is given by
iLnνn = dyn , yn(p) = 0. The convergence of φn to φ follows from Proposition 5.1 and Fact
5.4. ��
Remark 5.8 The application φ (resp. φn) defined above is a diffeomorphism on R (resp. on
every saturated subset of R). Take an open set J of I , contained in In for all n but a finite
number. The pullback of themetrics by these applications read (φ−1)∗g = 2dxdy+ f (x)dy2

and (φ−1
n )∗gn = 2dxdy + fn(x)dy2, (x, y) ∈ I × R, whose extensions to R2 that give the

maximal ribbons in Eu
f and Eu

fn
respectively, are proved to be convergent in Lemma 2.11.

Lemma 5.9 Let (U , K ), I = I × R be a Lorentzian domino where the unique null orbit
of K (represented by x = 0) is incomplete. Denote by g the metric on U and let (gn, Kn)

be a sequence of metrics on U such that (gn, Kn)
Cr→ (g, K ), r ≥ 2. Then, there exists a

neighborhood J of 0 in which the coordinate neighborhoods for gn given by Eq. (5) converges
Cr−2 to that of g.

Proof The neighborhood J is given by Lemma 2.12, and the convergence follows from the
previous lemma, and Eqs. (5) and (8), [2], that define these coordinates. ��

5.2 A continuous function controlling conjugate points

Define

� = {(g, p) ∈ L∗
K (T ) × T , g(K , K )(p) �= 0 and ∇K K (p) �= 0}.

123



Geometriae Dedicata (2023) 217 :90 Page 33 of 45 90

For g ∈ L∗
K (T ), the points p ∈ T such that (g, p) ∈ � are the points of T which are neither

on a null orbit of K nor on a critical orbit. Take (g, p) ∈ � and consider the geodesic γp in
T tangent to K at p. Set t = 0 at p and define c(t0)+ c(t1) as in the previous section. Define
a function Z on the open set � as follows:

Z : � −→ R

Z(g, p) = c(t0) + c(t1)

s(t0)

where t0, t1 and c are exactly as in the previous section.

Lemma 5.10 A metric g in L∗
K (T ) is without conjugate points if and only if Z(g, p) ≥ 0,

∀p ∈ T such that (g, p) ∈ �.

Proof This follows from Lemma 4.2 and Proposition 4.13. ��
Proposition 5.11 If the space of Lorentzian metrics on T is equipped with the C2 topology,
then Z is continuous on �.

Proof Let (gn, pn) → (g, p) in �, where gn converges to g for the C2 topology. In R2

equipped with the metric 2dxdy + f (x)dy2 (resp. 2dxdy + fn(x)dy2), let γ (resp. γn) be
the geodesic tangent to φ∗K (resp. φn∗Kn) at φ(p) (resp. φn(pn)), where φ, φn, n ∈ N,
are the local charts defined in Corollary 5.7, satisfying φ(p) = φn(p) = 0. The geodesic
sequence γn converges uniformly to γ on any compact set of R2.
Let us rewrite the Jacobi equations along γn and γ :

u′′(t) + εκn(t)u(t) = 0 (19)

u′′(t) + εκ(t)u(t) = 0 (20)

κn converges uniformly to κ on any compact set. The pairs of solutions (s, c) and (sn, cn) are
given by the same initial conditions so sn and cn converge uniformly to s and c respectively,
on any compact set containing γ .
Lemma 4.4 states that γ restricted to the subset of R2 contained in ˜T lies in a domino. This
holds also for γn , for n large enough. Denote by x0 (resp. xn0 ) the zero of f (resp. fn) in it,
and set x = z0 (resp. x = zn0) at p (resp. pn). We have by use of Fact 2.13 that xn0 converges
to x0. Write

t0 =
∫ x0

z0

1
√

C2 − ε f (x)
dx .

This yields tn0 → t0, hence the convergence of cn(tn0 ) to c(t0). To show that cn(tn1 ) tends to
c(t1), we also show that tn1 tends to t1. Since a geodesic crosses a type I band between t0 and
t1, we can write

t1 = t0 +
∫ x1

x0

1
√

C2 − ε f (x)
dx .

This yields tn1 → t1 in the same way, finishing the proof. ��
Now assume that T ∈ SL∗

K (T ), i.e. the function f induced by the norm of K satisfies the
property

f
′
(xn) + f

′
(xn+1) = 0, ∀n ∈ Z,
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where (xn)n∈Z is the sequence of zeros of f , taken in an increasing order. Then, using
cs′ − c′s = 1, one can check that the Z function can be written in the following way:

Z : � −→ R

Z(g, p) = c′(t0) − c′(t1)
s′(t0)

Proposition 5.12 The functions Z can be extended to the set

˜� ={(g, p) ∈ SL∗
K (T ) × T , g(K , K )(p) ≥ 0 and ∇K K (p) �= 0}

� {(g, p) ∈ SL∗
K (T ) × T , g(K , K )(p) ≤ 0 and ∇K K (p) �= 0},

into a continuous function.

Proof Take (g, p) ∈ SL∗
K (T )×T such that g(K , K )(p) = 0. The null orbit of K containing

p splits the domino containing it into two connected components (interior of bands), one
timelike band and one spacelike band. Take (pn)n a sequence of points in the torus converging
to p, and contained in the timelike band. The sequence (γn)n of timelike geodesics tangent to
K at pn , ∀n, converges to the null orbit of K containing p. The functionZ(g) being constant
along the leaves of the Killing field for each metric g, we don’t change the behavior of Z if
we move the γn’s by the flow of K in such a way that the sequence converges to a timelike
geodesic γ∞ orthogonal to K and crossing the spacelike neighboring band.We can do this by
letting pn go to the saddle point of the null-orbit of K containing p, along a leaf orthogonal
to K contained in B. This way, we see that Z(g, pn) converges to −c

′
∞(2ω), where s∞ and

c∞ are the solutions of the Jacobi equation on γ∞, with initial conditions at the saddle point.
This limit does not depend on the choice of γ∞; denote it by Z(g, p)−. In the same way, if
γn’s are spacelike, we get another limit using this time a spacelike geodesic orthogonal to
K and passing through the same saddle point. Now, fix a metric in SL∗

K (T ) and denote by
(Bi )i∈I the bands of the torus for the metric g; the boundary of a band Bi is made of two null
orbits of K , call them ∂1B and ∂2B. Define for p ∈ �i∈I Bi :

˜Z(g, p) =
⎧

⎨

⎩

Z(g, p) if (g, p) ∈ B̊i ,
Z(g, p)ε1 if (g, p) ∈ ∂1B,

Z(g, p)ε2 if (g, p) ∈ ∂2B,

for all i ∈ I , where ε = ±1, depending on the type of the band.
This gives a well defined function ˜Z on the set

˜� ={(g, p) ∈ SL∗
K (T ) × T , g(K , K )(p) ≥ 0 and ∇K K (p) �= 0}

� {(g, p) ∈ SL∗
K (T ) × T , g(K , K )(p) ≤ 0 and ∇K K (p) �= 0},

Now, to prove that ˜Z is continuous, take (g, p) ∈ SL∗
K (T )×T such that g(K , K )(p) = 0,

and consider a sequence of metrics gn ∈ SL∗
K (T ) converging to g. Lemma 5.9 and Lemma

2.12 allow us to consider a coordinate neighborhood centered in 0 and given by Eq. (5), in
which the saddle points of gn and that of g are represented by the origin. Take a sequence
γn of timelike geodesics converging to the null orbit of K containing p. Denote by pn the
points where γn is tangent to Kn . One can find a sequence of points qn such that ˜Z(gn, qn) =
˜Z(gn, pn), for all n ∈ N, and the sequence of geodesics σn tangent to Kn at qn converges
to a timelike geodesic σ∞ orthogonal to K . We can achieve this in the following way: there
exists a sequence (tn)n such that the sequence of points Ftn (pn), where Ft is the flow of
K , converges to the origin. We use the convergence of the flows and define qn := Ftn

n (pn),
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where Ft
n is the flow of Kn (we choose the points qn to vary on a leaf orthogonal to K ). This

way, we obtain c
′
n(t

n
0 ) → c

′
∞(0) = 0 and s

′
n(t

n
0 ) → s

′
∞(0) = 1, where s∞ and c∞ are the

solutions of the Jacobi equation on γ∞, with initial conditions at the origin.
Now, we want to prove that c

′
n(t

n
1 ) converges to c

′
∞(2ω∞). Take an interval I in which σn

converges to σ∞. Take τ0 ∈ I ; σn and σ∞ may be seen as solutions of the differential equation
which gives locally the geodesics of gn and g, with initial conditions given by σ

′
n(τ0) and

σ
′
∞(τ0) respectively. Let us consider a coordinate neighborhood U , given by Lemma 2.12,

containing the saddle point that belongs to the null orbit of the type I neighboring band
containing σ

′
∞(τ0). Choosing τ0 so that σ∞(τ0), σn(τ0) ∈ U for n large enough, we can

assert that σn (extended to U ) converges to σ∞ in U . The result follows. ��
From now on, the function ˜Z will be simply denoted by Z.

5.3 Digression: Jacobi equations all of whose solutions are periodic

In what follows, g belongs to the family given in Theorem 4.19.

Lemma 5.13 If a metric g ∈ LK (T ) belongs to the family given in Theorem 4.19, then
Z vanishes on (g, p), p ∈ T , if and only if the Jacobi equation corresponding to γg, the
g-geodesic tangent to K at p, has only periodic solutions.

Proof For such a metric, Z is defined for p ∈ T such that γg is an invariant geodesic, and
the additional isometries of g given by condition (iv) in Theorem 4.19 imply that κ(t) is 2ω
periodic and that β is 2ω anti-periodic. In this case, formula (13) in Lemma 3.5 holds, so that
Z vanishes if and only if c(ω) = 0, which is equivalent to saying that c is 2ω anti-periodic
(hence 4ω periodic). ��
Remark 5.14 An equation

u
′′ + r(t)u = 0, t ∈ R,

where the coefficient r(t) is T -periodic is called a Hill equation. When all the solutions are
assumed to be T -antiperiodic, with one zero on [0, T [, the following inequality holds (see
[4], Appendix B p. 230)

T
∫ T

0
r(t)dt ≤ π2,

with equality only for constant r(t).

Let p, r : [a, b] → R, where p(x) > 0, and consider the Eq.

(py′)′ + λry = 0, a ≤ x ≤ b, (21)

with boundary conditions

y(a) = y(b) = 0. (22)

According to [11] (p. 288), there are two infinite sequences of parameter values 0 ≤ λ1 ≤
λ2..., 0 ≥ λ−1 ≥ λ−2..., each one of which has +∞ and −∞ for its only point of accumula-
tion, and for each parameter λm (resp. λ−m), a solution ym (resp. y−m) satisfying (22) exists.
The number of zeros of ym in [a, b] is m + 1.
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Let γ be an invariant geodesic for the metric g, and consider the differential system
{

u
′′ + λεκu = 0, t ∈ [0, 2ω]

u(0) = u(2ω) = 0,
(23)

where κ , the sectional curvature along γg , is (see Sect. 4.3) symmetric with respect to t = 0
and t = ω. Denote by λ1 the least positive eigenvalue of the differential system (23), which
exists by the statement above, and let y1 be the corresponding eigenfunction. Since κ is
symmetric with respect to t = ω, an easy computation gives either y

′
1(ω) = 0 or y1(ω) = 0.

Furthermore, y1 does not vanish on ]0, 2ω[, so actually y
′
1(ω) = 0. It follows that y1 is a

solution of the new system
{

u
′′ + λεκu = 0, t ∈ [0, ω]

u(0) = u
′
(ω) = 0.

(24)

Now, if λ is an eigenvalue of the system (24), with corresponding eigenfunction u defined
on [0, ω], then, by reflecting u about the line t = ω, one gets a solution of the differential
system (23), for κ is symmetric with respect to ω.
This proves that λ1 is also the least positive eigenvalue of the differential system (24).

The following fact follows from the proof of Lemma 3, [3].

Fact 5.15 Suppose that the coefficient r in Eq. (21) is symmetric with respect to t0 = a+b
2 .

If there exists a solution y0 of (py′)′ + ry = 0 satisfying y0(a) = y0(b) = 0, symmetric
with respect to t0, with y0 not vanishing on ]0, 2ω[, then the least positive eigenvalue of the
system (21)-(22) is λ1 = 1.

Lemma 5.16 When g belongs to the family given in Theorem 4.19, the following inequality
holds

∫ 2ω

0
εκ(t)dt ≤ π2

2ω
.

for all invariant geodesics.

Proof Let λ1 be the least positive eigenvalue of the system
{

u
′′ + λεκu = 0, t ∈ I = [0, ω]

u(0) = u
′
(ω) = 0.

(25)

We have the following inequality from Theorem 6, [5]

λ1 ≤ (π/2)2

d2ω2 , where d2 = min
t∈I

∫ ω

t εκ(t)dt

ω − t
.

The function β is a solution of the Jacobi equation that satisfies

β(0) = β
′
(ω) = 0, β

′
> 0 on [0, ω[,

This implies using Fact 5.15 above that the least positive eigenvalue λ1 of the system (25) is
λ1 = 1. Now set

h(t) = 1

ω − t

∫ ω

t
εκ(t)dt, t ∈ I

We have

h
′
(t) = 1

ω − t

[ 1

ω − t

∫ ω

t
εκ(t)dt − εκ(t)

]

.
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Using themeanvalue theorem,we show the existenceof τ ∈]t, ω[, such that 1
ω−t

∫ ω

t εκ(t)dt =
εκ(τ). This gives

h
′
(t) = 1

ω − t
(εκ(τ ) − εκ(t)), τ ∈]t, ω[.

Condition (iii) in Theorem 4.19 implies that εk(t) is an increasing function on [0, ω], so that

min
t∈I

∫ ω

t εκ(t)dt

ω − t
= 1

ω

∫ ω

0
εκ(t)dt .

��
Lemma 5.17 Consider a metric in the family given in Theorem 4.19; suppose that the Jacobi
equation of a geodesic γ has only periodic solutions, then

sup

{

1

ω

∫ 2ω

ω

εκ(t)dt, −εκ(0)

}

≥ π2

4ω2 . (26)

It follows that either −εκ(0) ≥ π2

4ω2 or κ is constant along γ .

Proof Let λ1 be the least positive eigenvalue of the system
{

u
′′ + λεκu = 0, t ∈ J = [0, ω]

u(ω) = u
′
(2ω) = 0.

(27)

The following inequality follows from Theorem 5, [5]:

λ1 ≥ (π/2)2

D2ω2 , where max
t∈I

| ∫ 2ω
t εκ(t)dt |
2ω − t

= D2.

Suppose that the Jacobi equation has only periodic solutions, i.e. c(ω) = 0. In this case, we
have c(ω) = c(3ω) = 0, and c(4ω − t) = c(t). Thus, c and the coefficient κ are symmetric
with respect to t = 2ω, with c not vanishing on ]ω, 3ω[. It follows that λ1 = 1, by use of
Fact 5.15 again.
Now set as in the proof of the previous lemma

h(t) = 1

2ω − t

∣

∣

∣

∫ 2ω

t
εκ(t)dt

∣

∣

∣, t ∈ I

Let b ∈ I the smallest real such that
∫ 2ω
b εκ(t)dt = 0. Doing the same computation as

before, we show the existence of τ ∈]t, 2ω[ such that

h
′
(t) =

⎧

⎨

⎩

1
2ω−t

(

εκ(τ) − εκ(t)
)

, t ∈ [ω, b]
1

2ω−t

(

− εκ(τ) + εκ(t)
)

, t ∈ [b, 2ω]
Condition (iii) in Theorem 4.19 implies that εκ(t) is a decreasing function on [ω, 2ω], so
that

max
t∈I

| ∫ 2ω
t εκ(t)dt |
2ω − t

= sup

{

1

ω

∫ 2ω

ω

εκ(t)dt, −εκ(0)

}

.

The above inequality reads

sup

{

1

ω

∫ 2ω

ω

εκ(t)dt, −εκ(0)

}

≥ π2

4ω2 .

The last assertion is an easy consequence of Lemma 5.16 and Remark 5.14. ��
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Corollary 5.18 Suppose that the curvature has a constant sign on an invariant geodesic γ

without being constant, then the Jacobi equation admits a non-periodic solution.

Proof A geodesic of type ε cuts the critical orbit of K of type−ε, corresponding to t = ω, on
which the curvature is either zero or has sign ε; since κ doesn’t change sign on γ ,−εκ(0) ≤ 0.
Therefore, if the Jacobi equation has only periodic solutions, κ is constant on γ by use of the
previous lemma. ��
Lemma 5.19 Suppose that the curvature vanishes exactly twice on the smallest period of f ,
and let γ be a geodesic on which κ(t) := κ ◦ γ (t) changes sign. If the Jacobi equation
associated to γ admits only periodic solutions, then

(ω − τ)2εκ(ω) ≥ π2

4
, (28)

where 0 < τ < ω is the smallest positive real such that κ(τ) = 0 on γ .

Proof By assumption, c(ω) = 0. Let b > 0 be the smallest positive real such that c′(b) = 0.
If we assume κ to vanish twice in the period of f , then the zeros of κ are on both sides of a
critical orbit of K corresponding to an extremum of f . Indeed, since κ(t) is symmetric with
respect to t = 0 and t = ω, either both zeros of it are in the same band or both of them are
on the critical orbits of K where f

′
changes sign. The latter implies that κ is everywhere

positive or everywhere negative on the torus, so it cannot actually happen, unless the torus
is flat. In addition, κ changes sign while vanishing. It follows that κ has sign −ε on [0, τ [
and ε on ]τ, ω], so that c is convex on [0, τ ] and concave on [τ, ω], hence τ < b < ω. The
curvature does not vanish on [b, ω]; on this interval it is easy to check that the differential
Eq.

(

1

κ
y

′
)′

+ εy = 0

is satisfied by u
′
, where u is a solution of the Jacobi equation. Let λ1 be the least positive

eigenvalue of the system
(

1

κ
y

′
)′

+ λεy = 0, t ∈ I = [b, ω],

y(b) = y
′
(ω) = 0.

The assumption on c leads to c
′′
(ω) = 0, so we have c

′′
(ω) = c′(b) = 0, and c

′′
does not

vanish on [b, ω[; it follows that λ1 = 1, as in the proof of the previous lemma.
We have (see Theorem 5, [5])

max
t∈I

ω − t
∫ ω

t εκ(t)dt
≥ π2

4(
∫ ω

b εκ(t)dt)2
. (29)

Now set

h(t) = ω − t
∫ ω

t εκ(t)dt
, t ∈ [b, ω].

The same argument as in the previous lemmas shows the existence of θ ∈]t, ω[, such that

h
′
(t) = (ω − t)(−εκ(θ) + εκ(t))

1

(
∫ ω

t εκ(t)dt)2
,
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so that h is a decreasing function on [b, ω], and (29) reads

(ω − b)
∫ ω

b
εκ(t)dt ≥ π2

4
.

Combining this with the fact that εκ(t) reaches its maximum at t = ω, and that b > τ , we
get the desired inequality:

(ω − τ)2εκ(ω) ≥ π2

4
.

��

5.4 Application: invariant geodesics with non-periodic Jacobi vector field

In what follows, f ∈ C∞(R,R) belongs to the family given in Theorem 4.19.

Proposition 5.20 Suppose κ vanishes twice on the smallest period of f . If there exists an
invariant geodesic γ0 on which κ changes sign, such that

−ε f
′′
(x0)

(∫ x1

x0

dx√
Mε − ε f (x)

)2

< 2π2, (30)

where x0, x1 are the coordinates of two consecutive points where γ0 is tangent to K , and
Mε = sup ε f (x), then, either κ is constant on the band where ε f is negative, or for all the
geodesics such that C2 ≤ C2

0 = ε f (x0), where C0 is the Clairaut constant of γ0, the Jacobi
equation admits a non-periodic solution.

Proof Let z0 = 0 and d be two consecutive zeros of f , such that z0 and d border the part of
f of sign −ε. Denote by xε

cr the coordinate of a zero of f
′
, such that either x0 ∈ [xε

cr , 0] or
x0 ∈ [d, xε

cr ]; for simplicity, assume x0 ∈ [xε
cr , 0]. We have x1 = d − x0. Define

h(x) = −ε
f

′′
(x)

2
− π2

(

∫ d−x
x

dt√
Mε−ε f (t)

)2 ,

where x ∈ J = [x0, 0]; h is a derivable function since for x ∈ J , Mε − ε f (t) > 0 for every
t ∈ [x, d − x].
A simple computation gives

h
′
(x) = −ε

f (3)(x)

2
− 2π2

√
Mε − ε f (x)

(

∫ d−x
x

dt√
Mε−ε f (t)

)3 .

Multiply both sides by f
′
(x); this gives

f
′
(x)h

′
(x) = −ε

f (3)(x) f
′
(x)

2
− D2 f

′
(x),

where D2 = 2π2

√
Mε−ε f (x)

(

∫ d−x
x

dt√
Mε−ε f (t)

)3 .

By assumption, we have f
′
f (3) ≤ 0; furthermore, f

′
has sign −ε on J ; combining these

two facts, we deduce that h is a decreasing function on J . Now, forC2 ≤ C2
0 i.e. x ∈ [x0, 0],
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we have

h(x0) ≥ −ε
f

′′
(x)

2
− π2

(
∫ d−x
x

dt
√

C2
0−ε f (t)

)2
,

so if we suppose that (30) is true, then

−ε
f

′′
(x)

2
− π2

(

∫ d−x
x

dt√
C2−ε f (t)

)2 < 0, ∀x ∈ J .

Now, recall that κ(t) = f
′′
(x(γ (t)))/2, and t(d − x) − t(x) = ∫ d−x

x
1√

C2−ε f (x)
dx . So the

latter inequality is equivalent to−εκ(0) < π2

4ω2 on γC , which ends the proof by Lemma 5.17.
��

Proposition 5.21 Suppose κ vanishes twice on the smallest period of f . Assume there exists
an invariant geodesic γ0 on which κ changes sign, such that

ε f
′′
(x−ε

cr )
(

∫ ζ1

ζ0

dx√
ε f (x0) − ε f (x)

)2
< 2π2, (31)

where

i) x−ε
cr is a critical point of f corresponding to the critical orbit of K of type −ε;

ii) ζ0 < x−ε
cr < ζ1 are the coordinates of two consecutive points where f

′′
vanishes, from

both sides of x−ε
cr ;

iii) x0 the point where γ0 is tangent to K .

Then for all the geodesics with C2
0 = ε f (x0) ≤ C2 < Mε , where C0 is the Clairaut constant

of γ0, the Jacobi equation admits a non-periodic solution.

Proof Inequality (31) implies that (ω0 − τ0)
2εκ(ω0) < π2

4 on γ0, where τ0 is the same as
in Lemma 5.19, hence the Jacobi equation on γ0 admits a non-periodic solution, by use of
Lemma 5.19.
This conclusion holds for C2 ≥ C2

0 , for (ωC − τC ) and εκ(ωC ) (we put C in index to say
that it depends on the geodesic γC ) are decreasing functions of C . ��

5.5 Stability by small deformation

Lemma 5.22 Let g ∈ L∗
K (T ). Assume κ vanishes n times on the smallest period of f , hence

twice between any two critical orbits of the Killing field of same type (n is the number of zeros
of f in a period), and that these zeros are not on the extremums of f . Assume in addition that
the zeros of κ are simple zeros. Let γ∞ be a critical orbit of K corresponding to an extremum
of f . Then there exists a neighborhood V of the set {(g, γ∞(t), t ∈ R)} inLK (T )×T , where
LK (T ) is equipped with the C∞ topology, such that Z > 0 on V ∩ �.

Proof This amounts to saying that the geodesics near γ∞, for metrics close enough to g,
where g is the metric on the torus, are without conjugate points. Call B the band containing
γ∞, and fix p a point on γ∞; it is sufficient to prove that there exists a neighborhood of
(g, p) in which Z is positive; the conclusion will follow from the compactness of γ∞. So let
(gn, pn) be a sequence in � converging to (g, p). For all n, denote by γn the gn-geodesic
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tangent to Kn at pn . Since (gn, pn) ∈ �, we have ∀n,C2
n < supB εgn(Kn, Kn). Choose p

to be the origin on T and denote by x (resp. xn) the transverse coordinate associated to g
(resp. gn), with the fixed origin. We can suppose that the points pn are all on the same side
of the critical orbit of Kn close to γ∞. Since the zeros of κ are simple zeros, the curvature
vanishes twice between two critical orbits of Kn of same type for metrics sufficiently close
to g. Set x = x0, x = x1 (resp. xn0 , xn1 ) the smallest positive reals such that g(K , K ) (resp.
gn(Kn, Kn)) vanishes, and x = ζ0, x = ζ1 (resp. ζ n

0 , ζ n
1 ) the smallest positive reals such that

κ (resp. κn) vanishes. When C2 varies in Iλ = [sup(ε f (ζ0), ε f (ζ1)) + λ, supB εg(K , K )],
λ > 0 small enough, the g-geodesic γC cuts the orbits x = ζ0 and x = ζ1 of K . Now fn(ζ n

0,1)

converges to f (ζ0,1), and supB εgn(Kn, Kn) converges to supB εg(K , K ); this ensures the
existence of � > 0 such that for n big enough, we have C2

n > � + sup(ε fn(ζ n
0 ), ε fn(ζ n

1 )).
Set t = 0 at the point where γn is tangent to Kn in the torus, and denote by tn0 , tn1 the smallest
positive reals such that β2

n (t
n
0 ) = β2

n (t
n
1 ) = C2

n , and tnζ0 , t
n
ζ1

the smallest positive reals such
that κn(tζ n0 ) = κn(tζ n1 ) = 0. There are 4 cases, listed in figures 3, 4, 5 and 6.
We first prove that the two sequences (tζ n1 −tζ n0 )n and (tn1 −tn0 )n are bounded. For this purpose,
write

tζ n1 − tζ n0 =
∫ ζ n1

ζ n0

1
√

C2
n − ε fn(xn)

dxn .

Fig. 3 ζ0 < x0 < x1 < ζ1, i.e. tζn0
< tn0 < ωn < tn1 < tζn1

Fig. 4 ζ0 < x0 < ζ1 < x1, i.e. tζn0
< tn0 < ωn < tζn1

< tn1
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Fig. 5 x0 < ζ0 < x1 < ζ1, i.e. t
n
0 < tζn0

< ωn < tn1 < tζn1

Fig. 6 x0 ≤ ζ0 < ζ1 ≤ x1, i.e. t
n
0 ≤ tζn0

< ωn < tζn1
≤ tn1

Let N be a neighborhood of (g, p) in LK (T )xT in which we have C2
n > � +

sup(ε fn(ζ n
0 ), ε fn(ζ n

1 )). For all x ∈ [ζ0, ζ1], we have
C2 − ε f (x) ≥ inf{C2 − ε f (ζ0),C

2 − ε f (ζ1)} = C2 − sup{ε f (ζ0), ε f (ζ1)},
hence, for metrics in N , we get

tζ n1 − tζ n0 =
∫ ζ n1

ζ n0

1
√

C2
n − ε fn(xn)

dxn ≤
∫ ζ n1

ζ n0

1
√

C2
n − sup(ε fn(ζ n

0 ), ε fn(ζ n
1 ))

dxn

≤ (ζ n
1 − ζ n

0 )
1√
�

.

Restricting to a subset ofN if necessary, we can find a constant A > 0 such that tζ n1 − tζ n0 ≤ A
on this subset. It follows that when n tends to infinity, the difference tζ 10

− tζ n0 is bounded,
even if tζ n0 and tζ n1 go to infinity. Similarly, write

tn1 − tn0 =
∫ xn1

xn0

1
√

C2
n − ε fn(xn)

dxn ≤ (xn1 − xn0 )
1

√

C2
n

.

Using that Cn is bounded away from zero establishes that tn1 − tn0 is bounded, which is our
assertion.
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Our next claim is that cn(tζ n1 ) > 0, provided n is large enough. The solution cn is convex
for t ∈ [0, tζ n0 ]. Denote by τn and θn the smallest positive reals such that cn(τn) = 0 and
c′
n(θn) = 0. Suppose the claim were false. Then we could find a sequence (ni )i → ∞ such
that ∀i , τni ≤ ζ

ni
1 . We have βni (t) = β ′

ni (0)sni (t); write εβ
′
(t) = 1

2 f
′
(x(γ (t))), it appears

that β
′
ni (0) → 0 when i → ∞. Using 〈Kn, Kn〉 = ε(C2

n − β2
n ), we get

sni (tζ ni0
) = C2

ni − ε fni (ζ
ni
0 )

β ′
ni (0)

and sni (tζ ni1
) = C2

ni − ε fni (ζ
ni
1 )

β ′
ni (0)

that tend to infinity when i goes to infinity. It follows that sni (τni ) → ∞; using cns′
n −c′

nsn =
1, this yields c′

ni (τni ) → 0. Now, since κni has constant sign between θni and ζ
ni
1 , |c′

ni (t)|
reaches its maximal value at t = τni ; this gives for all t ∈ [θni , ζ ni

1 ], |c′
ni (t)| ≤ |c′

ni (τni )|.
From the mean value theorem, there exists ai ∈ [θni , ζ ni

1 ] such that cni (θni ) − cni (ζ
ni
1 ) =

c′
ni (ai )(θni − ζ

ni
1 ). Since θni − ζ

ni
1 is uniformly bounded, we can make cni (θni ) − cni (ζ

ni
1 )

the smallest possible by setting i large enough. Now from cni (θni ) > cni (0) = 1, we see that
provided i is large enough, cni (ζ

ni
1 ) > 0, so cni does not vanish on [0, ζ ni

1 ], contrary to our
assumption. This gives cn(tn0 ) > 0 for n large enough, and in the cases (1) and (3), we also
get cn(tn1 ) > 0, making cn(tn0 ) + cn(tn1 ) positive near the boundary.
We are left with the cases (2) and (4). We already know that cn(tζ n1 ) > 0 near the boundary,
and want to prove that cn(tn1 ) > 0. We look at the set A = {cn(tn1 ), cn(tn1 ) < 0}. If A
is finite, there is nothing to do; if it is infinite, denote its elements by {cni (tni1 )} and write
cni (t

ni
1 ) − cni (τni ) = c

′
ni (ai )(t

ni
1 − τni ), where ai ∈ [τni , tni1 ]. We have 0 ≥ c

′
ni (t

ni
1 ) =

cni (t
ni
1 )s

′
ni

(t
ni
1 )−1

sni (t
ni
1 )

> − 1
sni (t

ni
1 )

. Like before, sni (t
ni
1 ) goes to infinity when i → ∞, hence

c
′
ni (t

ni
1 ) → 0. Now, since |c′(t)| ≤ |c′

ni (t
ni
1 )|, ∀t ∈ [τni , tni1 ] and tni1 − τni is bounded, we

can make |cni (tni1 )| the smallest possible. The proof is completed by observing that actually
cn(tn0 ) > 1 for n sufficiently large. To do this, consider the set B = {cn(tn0 ), tn0 > θn}. If B is
finite, the assertion follows, for cn is an increasing function on [0, θn]. In the same manner,
if B is infinite, we exploit the fact that cn(tn0 ) is positive, and make it the closest possible to
cn(θni ). Since cn(θni ) > 1, the conclusion follows. ��
Theorem 5.23 Let (T , K ) be a torus in the family given in Theorem 4.19. We exclude the
case in which there are open sets of constant curvature. Assume f satisfies the following
conditions:

(1) κ has simple zeros;
(2) There is only one critical orbit of K in each band of the torus;
(3) For ε = ±1, there exists x0 in which f has sign ε, such that:

−ε f
′′
(x0)

(

∫ x1

x0

dx√
Mε − ε f (x)

)2
< 2π2,

and

ε f
′′
(x−ε

cr )
(

∫ ζ1

ζ0

dx√
ε f (x0) − ε f (x)

)2
< 2π2,

where x−ε
cr , ζ0, ζ1, x1 and Mε are as in propositions 5.20 and 5.21.

Then, there is a neighborhoodN of the torus in LK (T ) such that the metrics inN ∩ SLK (T )

have no conjugate points, whereas the others admit conjugate points.
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Proof Denote by g0 the metric on T ; g0 has no conjugate points. The assumptions on g0
imply that a neighborhood of g0 in LK (T ) can be taken in L∗

K (T ). By propositions 5.20 and
5.21, conditions (1) and (3) imply that the extended function Z(g0) is strictly positive on the
open set

˜�(g0) = {p ∈ T , g0(∇K0K0,∇K0K0)(p) �= 0}.
Therefore, there exists a neighborhood of any compact subset of ˜�(g0) in

˜�(g) = {(g, p) ∈ SL∗
K (T ) × T , g(∇K K ,∇K K )(p) �= 0}

on whichZ is positive. Thus, we get a neighborhood V of g0 inL∗
K (T ) such thatZ is positive

on SV × F , where SV = V ∩ SL∗
K (T ) and F is a compact subset of T not containing the

critical orbits of K0. We can make this compact subset the closest possible to the boundary.
Now, the condition f

′
f

′′′ ≤ 0, combined with (1), implies that κ has exactly two simple
zeros in the smallest period of f . Besides, these zeros cannot be on the extremums of f
unless the torus is flat (see the proof of Lemma 5.19). Therefore, Lemma 5.22 provides a
neighborhood V

′
of g0 in LK (T ) such thatZ is positive on V

′ ×U ,U being a neighborhood
of the critical orbits of K0 in the torus. Taking V ∩ V

′
achieves the proof. ��

Theorem5.23 gives away to obtain examples of Lorentzianmetrics on T with no conjugate
points, that are stable by deformation in SL∗

K (T ). Here are a few examples:

• The Clifton–Pohl torus, corresponding to f (x) = sin(2x);
• f (x) = sin(x)

10+sin(x) ;• f (x) = ln(2 + sinx);
• f (x) = cos(sin(x)) − 3/4;
• f (x) = Jacobi SD(x, 1/2);
• f (x) = Jacobi SN (x, 1/4).

The verification of hypothesis (3) of Theorem 5.23 is done numerically.

Remark 5.24 The quadratic variations of theClifton–Pohl torus are also stable by deformation
in SL∗

K (T ); this comes from an explicit resolution of the Jacobi equation.
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